
ASCI CBL Practicals
Release v1.0

Phillip Lippe

May 11, 2022

PRACTICALS

1 Schedule 3

2 How to run the notebooks 5

3 Report submission 7
3.1 Tutorial: Introduction to PyTorch . 7
3.2 Practical 1: Multi-Layer Perceptrons . 31
3.3 Practical 2: Convolutional Neural Networks . 40
3.4 Practical 3: Vision Transformers . 50
3.5 Practical 4: Regular Group Convolutions . 59
3.6 Practical 5: Self-Supervised Contrastive Learning with SimCLR . 97

i

ii

ASCI CBL Practicals, Release v1.0

Course website: http://computervisionbylearning.info/
Course edition: May, 2022
Repository: https://github.com/phlippe/asci_cbl_practicals/
Author: Phillip Lippe

UPDATE (May 11): To reduce the workload, we decided that each group only has to do Practical 1-3, and choose
between Practical 4 or Practical 5, but don’t require to do both. Each group can individually choose one of the two
advanced practicals based on their interests, and are allowed to skip the other practical.

This website provides you access to the content that we will use for the practical session at the ASCI course “Computer
Vision by Learning”. In the course, you will conduct 5 practicals to different topics in the domain of machine and deep
learning for Computer Vision, with increasing complexity to recent research topics in the field. Throughout the course,
you will be guided by Teaching Assistant that help you with any question you may have. The teaching team consists
of: Adeel Pervez, David Knigge, David Zhang, Tao Hu, Yunhua Zhang, Zenglin Shi, and Phillip Lippe.

The practicals require familiarity with the Deep Learning framework “PyTorch” and common scientific computing
packages of Python such as numpy. If you are not familiar with PyTorch or would like to have a refresher, please check
out our tutorial Introduction to PyTorch before the course. Additionally, the practicals will require you to train several
deep learning models. While we tried to reduce the computational cost of each training as much as possible, you will
require access to a GPU in order to finish the practicals. For more details, please check the instruction in the section
How to run the notebooks, and make sure to have your preferred solution setup and ready to go at the start of the course.

The practicals are intended to be solved in groups of 2 students. You can already find team mates before the course
starts if you know fellow students, or form the groups during the first practicals. Once you have formed groups, please
sign up your group in this Google spreadsheet.

For any remaining questions regarding the practicals, please contact us at p.lippe@uva.nl.

PRACTICALS 1

http://computervisionbylearning.info/
https://github.com/phlippe/asci_cbl_practicals/
https://docs.google.com/spreadsheets/d/1H1zmIPaep4_4YFX5aS2h_-H6OQFIIGfzHoLztXWD_-k/edit?usp=sharing
mailto:p.lippe@uva.nl

ASCI CBL Practicals, Release v1.0

2 PRACTICALS

CHAPTER

ONE

SCHEDULE

Date Practical
Monday, 9. May 2022
Tuesday, 10. May 2022

Practical 1: Multi-Layer Perceptrons
Practical 2: Convolutional Neural Networks
Practical 3: Vision Transformers

Wednesday, 11. May 2022 Practical 4: Regular Group Convolutions
Thursday, 12. May 2022 Practical 5: Self-Supervised Contrastive Learning

The 5 practicals are aligned with the lectures of each day. For the first two days, it is expected that you finish the first
three practicals. Ideally, you would finish Practical 1 and start with Practical 2 on Monday, and finish Practical 2 as
well as Practical 3 on Tuesday. For the remaining two days, one practical per day is scheduled which aligns with the
first lecture of each day. On each day, we have a practical session in the Hotel Casa from 13.30-17.00, where TAs will
be in the room to answer your questions.

3

ASCI CBL Practicals, Release v1.0

4 Chapter 1. Schedule

CHAPTER

TWO

HOW TO RUN THE NOTEBOOKS

On this website, you will find the notebooks exported into a HTML format so that you can read them from whatever
device you prefer. Your task is to fill in the notebooks to solve the practicals. There are three main ways of running the
notebooks we recommend:

• Locally on GPU: If you have a laptop with a build-in NVIDIA GPU, we recommend that you run the practicals
on your own machine. All notebooks are stored on the github repository that also builds this website. You can
find them here: https://github.com/phlippe/asci_cbl_practicals/. While Practical 1 can be executed on common
laptops without a GPU, the later practicals require access to a GPU to keep the training times in a reasonable
range. Nonetheless, if you prefer, you can code and test most of your code on a CPU-only system, i.e. your own
laptop, and once your code is tested and ready, use one of the remaining options to train the model. To ensure
that you have all the right python packages installed, we provide a conda environment in the same repository.

• Google Colab: If you do not have access to a GPU on your local machine, you can make use of Google Colab.
Google Colab provides you access to GPUs for free, and you can activate the GPU support by Runtime ->
Change runtime type -> Hardware accelerator: GPU. Each notebook on this documentation website
has a badge with a link to directly open it on Google Colab. It is highly recommend to copy the notebook to
your own Google Drive before starting, since when closing the session, changes might be lost if you don’t save
it to your local computer or have copied the notebook to your Google Drive beforehand. In addition, note that
for free account, Google Colab is limited to one session at a time, and each session has a time limit.

• Compute cluster: If you have access to a compute cluster, we recommend to using it to do your final trainings.
Depending on your preference, you can implement the practicals either locally or on Google Colab. Once your
notebook is ready, you can first convert the notebooks to a script using jupyter nbconvert --to script
...ipynb, and then start a job on the cluster for running the script. A few advices when running on clusters:

– Disable the tqdm statements in the notebook. Otherwise your slurm output file might overflow and be
several MB large.

– Comment out the matplotlib plotting statements, or change plt.show() to plt.savefig(...).

5

https://github.com/phlippe/asci_cbl_practicals/
https://github.com/phlippe/asci_cbl_practicals
https://colab.research.google.com/notebooks/intro.ipynb#recent=true

ASCI CBL Practicals, Release v1.0

6 Chapter 2. How to run the notebooks

CHAPTER

THREE

REPORT SUBMISSION

Submission email: asci.cbl.practicals@googlemail.com
Deadline: 31. May, 2022 (23:59 CEST)

At the end of the course, you are expected to submit a report about your findings of your practicals. The report should be
prepared as a PDF in the LaTeX template provided in the repository at report/. In the report, you are expected to answer
the questions in the practicals, and include any figures requested in the practicals (e.g. the training and/or evaluation
curves of a model). Your report should have roughly 1 page per practical, with a maximum of 8 pages. For submission,
add your report to your filled notebooks as a zip file and send it to asci.cbl.practicals@googlemail.com. Please make
sure to clear all outputs of the notebooks before submitting, and exclude any datasets or trained models from your
submission.

Please remember that we do not allow any form of plagiarism. Any plagiarism will lead to all team members failing
the course.

3.1 Tutorial: Introduction to PyTorch

Open notebook:
Recordings:

Welcome to our PyTorch tutorial for the ASCI course “Computer Vision by Learning” 2022! The following notebook is
meant to give a short introduction to PyTorch basics, and get you setup for writing your own neural networks. PyTorch
is an open source machine learning framework that allows you to write your own neural networks and optimize them
efficiently. However, PyTorch is not the only framework of its kind. Alternatives to PyTorch include TensorFlow,
JAX and Caffe. We choose to teach PyTorch at the University of Amsterdam because it is well established, has a
huge developer community (originally developed by Facebook), is very flexible and especially used in research. Many
current papers publish their code in PyTorch, and thus it is good to be familiar with PyTorch as well. Meanwhile,
TensorFlow (developed by Google) is usually known for being a production-grade deep learning library. Still, if you
know one machine learning framework in depth, it is very easy to learn another one because many of them use the
same concepts and ideas. For instance, TensorFlow’s version 2 was heavily inspired by the most popular features of
PyTorch, making the frameworks even more similar. If you are already familiar with PyTorch and have created your
own neural network projects, feel free to just skim this notebook.

We are of course not the first ones to create a PyTorch tutorial. There are many great tutorials online, including the
“60-min blitz” on the official PyTorch website. Yet, we choose to create our own tutorial which is designed to give
you the basics particularly necessary for the practicals, but still understand how PyTorch works under the hood. Over
the next few weeks, we will also keep exploring new PyTorch features in the series of Jupyter notebook tutorials about
deep learning.

7

mailto:asci.cbl.practicals@googlemail.com
mailto:asci.cbl.practicals@googlemail.com
https://github.com/phlippe/asci_cbl_practicals/blob/master/notebooks/Introduction_to_PyTorch.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/master/notebooks/Introduction_to_PyTorch.ipynb
https://youtu.be/wnKZZgFQY-E
https://youtu.be/schbjeU5X2g
https://www.tensorflow.org/
https://github.com/google/jax#quickstart-colab-in-the-cloud
http://caffe.berkeleyvision.org/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/

ASCI CBL Practicals, Release v1.0

We will use a set of standard libraries that are often used in machine learning projects. If you are running this notebook
on Google Colab, all libraries should be pre-installed. If you are running this notebook locally, make sure you have
installed our environment and have activated it.

[1]: ## Standard libraries
import os
import math
import numpy as np
import time

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('svg', 'pdf') # For export
from matplotlib.colors import to_rgba
import seaborn as sns
sns.set()

Progress bar
from tqdm.notebook import tqdm

3.1.1 The Basics of PyTorch

We will start with reviewing the very basic concepts of PyTorch. As a prerequisite, we recommend to be familiar with
the numpy package as most machine learning frameworks are based on very similar concepts. If you are not familiar
with numpy yet, don’t worry: here is a tutorial to go through.

So, let’s start with importing PyTorch. The package is called torch, based on its original framework Torch. As a first
step, we can check its version:

[2]: import torch
print("Using torch", torch.__version__)

Using torch 1.10.0

At the time of writing this tutorial (mid of April 2022), the current stable version is 1.11. You should therefore see the
output Using torch 1.11.0 or Using torch 1.10.0, eventually with some extension for the CUDA version on
Colab. In general, it is recommended to keep the PyTorch version updated to the newest one. If you see a lower version
number than 1.10, make sure you have installed the correct the environment, or ask one of your TAs. In case PyTorch
1.12 or newer will be published during the time of the course, don’t worry. The interface between PyTorch versions
doesn’t change too much, and hence all code should also be runnable with newer versions.

As in every machine learning framework, PyTorch provides functions that are stochastic like generating random num-
bers. However, a very good practice is to setup your code to be reproducible with the exact same random numbers.
This is why we set a seed below.

[3]: torch.manual_seed(42) # Setting the seed

[3]: <torch._C.Generator at 0x7fad896113d0>

8 Chapter 3. Report submission

https://numpy.org/devdocs/user/quickstart.html
http://torch.ch/

ASCI CBL Practicals, Release v1.0

Tensors

Tensors are the PyTorch equivalent to Numpy arrays, with the addition to also have support for GPU acceleration (more
on that later). The name “tensor” is a generalization of concepts you already know. For instance, a vector is a 1-D tensor,
and a matrix a 2-D tensor. When working with neural networks, we will use tensors of various shapes and number of
dimensions.

Most common functions you know from numpy can be used on tensors as well. Actually, since numpy arrays are so
similar to tensors, we can convert most tensors to numpy arrays (and back) but we don’t need it too often.

Initialization

Let’s first start by looking at different ways of creating a tensor. There are many possible options, the most simple one
is to call torch.Tensor passing the desired shape as input argument:

[4]: x = torch.Tensor(2, 3, 4)
print(x)

tensor([[[-2.0921e+00, 9.9902e-33, -6.8406e-19, 4.5803e-41],
[-6.8419e-19, 4.5803e-41, 1.9552e-04, 4.2477e+15],
[-2.1203e-19, 4.5803e-41, -2.1213e-19, 4.5803e-41]],

[[-5.8784e-05, 2.4339e-24, -2.1203e-19, 4.5803e-41],
[1.3498e+14, 3.0680e-41, 9.9128e-23, 3.6741e-28],
[-2.1170e-19, 4.5803e-41, -2.1283e-19, 4.5803e-41]]])

The function torch.Tensor allocates memory for the desired tensor, but reuses any values that have already been in
the memory. To directly assign values to the tensor during initialization, there are many alternatives including:

• torch.zeros: Creates a tensor filled with zeros

• torch.ones: Creates a tensor filled with ones

• torch.rand: Creates a tensor with random values uniformly sampled between 0 and 1

• torch.randn: Creates a tensor with random values sampled from a normal distribution with mean 0 and vari-
ance 1

• torch.arange: Creates a tensor containing the values 𝑁,𝑁 + 1, 𝑁 + 2, ...,𝑀

• torch.Tensor (input list): Creates a tensor from the list elements you provide

[5]: # Create a tensor from a (nested) list
x = torch.Tensor([[1, 2], [3, 4]])
print(x)

tensor([[1., 2.],
[3., 4.]])

[6]: # Create a tensor with random values between 0 and 1 with the shape [2, 3, 4]
x = torch.rand(2, 3, 4)
print(x)

tensor([[[0.8823, 0.9150, 0.3829, 0.9593],
[0.3904, 0.6009, 0.2566, 0.7936],
[0.9408, 0.1332, 0.9346, 0.5936]],

(continues on next page)

3.1. Tutorial: Introduction to PyTorch 9

ASCI CBL Practicals, Release v1.0

(continued from previous page)

[[0.8694, 0.5677, 0.7411, 0.4294],
[0.8854, 0.5739, 0.2666, 0.6274],
[0.2696, 0.4414, 0.2969, 0.8317]]])

You can obtain the shape of a tensor in the same way as in numpy (x.shape), or using the .size method:

[7]: shape = x.shape
print("Shape:", x.shape)

size = x.size()
print("Size:", size)

dim1, dim2, dim3 = x.size()
print("Size:", dim1, dim2, dim3)

Shape: torch.Size([2, 3, 4])
Size: torch.Size([2, 3, 4])
Size: 2 3 4

Tensor to Numpy, and Numpy to Tensor

Tensors can be converted to numpy arrays, and numpy arrays back to tensors. To transform a numpy array into a tensor,
we can use the function torch.from_numpy:

[8]: np_arr = np.array([[1, 2], [3, 4]])
tensor = torch.from_numpy(np_arr)

print("Numpy array:", np_arr)
print("PyTorch tensor:", tensor)

Numpy array: [[1 2]
[3 4]]
PyTorch tensor: tensor([[1, 2],

[3, 4]])

To transform a PyTorch tensor back to a numpy array, we can use the function .numpy() on tensors:

[9]: tensor = torch.arange(4)
np_arr = tensor.numpy()

print("PyTorch tensor:", tensor)
print("Numpy array:", np_arr)

PyTorch tensor: tensor([0, 1, 2, 3])
Numpy array: [0 1 2 3]

The conversion of tensors to numpy require the tensor to be on the CPU, and not the GPU (more on GPU support in a
later section). In case you have a tensor on GPU, you need to call .cpu() on the tensor beforehand. Hence, you get a
line like np_arr = tensor.cpu().numpy().

10 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Operations

Most operations that exist in numpy, also exist in PyTorch. A full list of operations can be found in the PyTorch
documentation, but we will review the most important ones here.

The simplest operation is to add two tensors:

[10]: x1 = torch.rand(2, 3)
x2 = torch.rand(2, 3)
y = x1 + x2

print("X1", x1)
print("X2", x2)
print("Y", y)

X1 tensor([[0.1053, 0.2695, 0.3588],
[0.1994, 0.5472, 0.0062]])

X2 tensor([[0.9516, 0.0753, 0.8860],
[0.5832, 0.3376, 0.8090]])

Y tensor([[1.0569, 0.3448, 1.2448],
[0.7826, 0.8848, 0.8151]])

Calling x1 + x2 creates a new tensor containing the sum of the two inputs. However, we can also use in-place opera-
tions that are applied directly on the memory of a tensor. We therefore change the values of x2 without the chance to
re-accessing the values of x2 before the operation. An example is shown below:

[11]: x1 = torch.rand(2, 3)
x2 = torch.rand(2, 3)
print("X1 (before)", x1)
print("X2 (before)", x2)

x2.add_(x1)
print("X1 (after)", x1)
print("X2 (after)", x2)

X1 (before) tensor([[0.5779, 0.9040, 0.5547],
[0.3423, 0.6343, 0.3644]])

X2 (before) tensor([[0.7104, 0.9464, 0.7890],
[0.2814, 0.7886, 0.5895]])

X1 (after) tensor([[0.5779, 0.9040, 0.5547],
[0.3423, 0.6343, 0.3644]])

X2 (after) tensor([[1.2884, 1.8504, 1.3437],
[0.6237, 1.4230, 0.9539]])

In-place operations are usually marked with a underscore postfix (e.g. “add_” instead of “add”).

Another common operation aims at changing the shape of a tensor. A tensor of size (2,3) can be re-organized to any
other shape with the same number of elements (e.g. a tensor of size (6), or (3,2), . . .). In PyTorch, this operation is
called view:

[12]: x = torch.arange(6)
print("X", x)

X tensor([0, 1, 2, 3, 4, 5])

3.1. Tutorial: Introduction to PyTorch 11

https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensors.html

ASCI CBL Practicals, Release v1.0

[13]: x = x.view(2, 3)
print("X", x)

X tensor([[0, 1, 2],
[3, 4, 5]])

[14]: x = x.permute(1, 0) # Swapping dimension 0 and 1
print("X", x)

X tensor([[0, 3],
[1, 4],
[2, 5]])

Other commonly used operations include matrix multiplications, which are essential for neural networks. Quite often,
we have an input vector x, which is transformed using a learned weight matrix W. There are multiple ways and
functions to perform matrix multiplication, some of which we list below:

• torch.matmul: Performs the matrix product over two tensors, where the specific behavior depends on the
dimensions. If both inputs are matrices (2-dimensional tensors), it performs the standard matrix product. For
higher dimensional inputs, the function supports broadcasting (for details see the documentation). Can also be
written as a @ b, similar to numpy.

• torch.mm: Performs the matrix product over two matrices, but doesn’t support broadcasting (see documentation)

• torch.bmm: Performs the matrix product with a support batch dimension. If the first tensor 𝑇 is of shape
(𝑏×𝑛×𝑚), and the second tensor 𝑅 (𝑏×𝑚× 𝑝), the output 𝑂 is of shape (𝑏×𝑛× 𝑝), and has been calculated
by performing 𝑏 matrix multiplications of the submatrices of 𝑇 and 𝑅: 𝑂𝑖 = 𝑇𝑖@𝑅𝑖

• torch.einsum: Performs matrix multiplications and more (i.e. sums of products) using the Einstein summation
convention. Explanation of the Einstein sum can be found in assignment 1.

Usually, we use torch.matmul or torch.bmm. We can try a matrix multiplication with torch.matmul below.

[15]: x = torch.arange(6)
x = x.view(2, 3)
print("X", x)

X tensor([[0, 1, 2],
[3, 4, 5]])

[16]: W = torch.arange(9).view(3, 3) # We can also stack multiple operations in a single line
print("W", W)

W tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])

[17]: h = torch.matmul(x, W) # Verify the result by calculating it by hand too!
print("h", h)

h tensor([[15, 18, 21],
[42, 54, 66]])

12 Chapter 3. Report submission

https://pytorch.org/docs/stable/generated/torch.matmul.html?highlight=matmul#torch.matmul
https://pytorch.org/docs/stable/generated/torch.mm.html?highlight=torch%20mm#torch.mm

ASCI CBL Practicals, Release v1.0

Indexing

We often have the situation where we need to select a part of a tensor. Indexing works just like in numpy, so let’s try it:

[18]: x = torch.arange(12).view(3, 4)
print("X", x)

X tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])

[19]: print(x[:, 1]) # Second column

tensor([1, 5, 9])

[20]: print(x[0]) # First row

tensor([0, 1, 2, 3])

[21]: print(x[:2, -1]) # First two rows, last column

tensor([3, 7])

[22]: print(x[1:3, :]) # Middle two rows

tensor([[4, 5, 6, 7],
[8, 9, 10, 11]])

Dynamic Computation Graph and Backpropagation

One of the main reasons for using PyTorch in Deep Learning projects is that we can automatically get gradi-
ents/derivatives of functions that we define. We will mainly use PyTorch for implementing neural networks, and
they are just fancy functions. If we use weight matrices in our function that we want to learn, then those are called the
parameters or simply the weights.

If our neural network would output a single scalar value, we would talk about taking the derivative, but you will see
that quite often we will have multiple output variables (“values”); in that case we talk about gradients. It’s a more
general term.

Given an input x, we define our function by manipulating that input, usually by matrix-multiplications with weight
matrices and additions with so-called bias vectors. As we manipulate our input, we are automatically creating a compu-
tational graph. This graph shows how to arrive at our output from our input. PyTorch is a define-by-run framework;
this means that we can just do our manipulations, and PyTorch will keep track of that graph for us. Thus, we create a
dynamic computation graph along the way.

So, to recap: the only thing we have to do is to compute the output, and then we can ask PyTorch to automatically get
the gradients.

Note: Why do we want gradients? Consider that we have defined a function, a neural net, that is supposed
to compute a certain output 𝑦 for an input vector x. We then define an error measure that tells us how
wrong our network is; how bad it is in predicting output 𝑦 from input x. Based on this error measure, we
can use the gradients to update the weights W that were responsible for the output, so that the next time
we present input x to our network, the output will be closer to what we want.

The first thing we have to do is to specify which tensors require gradients. By default, when we create a tensor, it does
not require gradients.

3.1. Tutorial: Introduction to PyTorch 13

ASCI CBL Practicals, Release v1.0

[23]: x = torch.ones((3,))
print(x.requires_grad)

False

We can change this for an existing tensor using the function requires_grad_() (underscore indicating that this is a
in-place operation). Alternatively, when creating a tensor, you can pass the argument requires_grad=True to most
initializers we have seen above.

[24]: x.requires_grad_(True)
print(x.requires_grad)

True

In order to get familiar with the concept of a computation graph, we will create one for the following function:

𝑦 =
1

|𝑥|
∑︁
𝑖

[︀
(𝑥𝑖 + 2)2 + 3

]︀
You could imagine that 𝑥 are our parameters, and we want to optimize (either maximize or minimize) the output 𝑦. For
this, we want to obtain the gradients 𝜕𝑦/𝜕x. For our example, we’ll use x = [0, 1, 2] as our input.

[25]: x = torch.arange(3, dtype=torch.float32, requires_grad=True) # Only float tensors can␣
→˓have gradients
print("X", x)

X tensor([0., 1., 2.], requires_grad=True)

Now let’s build the computation graph step by step. You can combine multiple operations in a single line, but we will
separate them here to get a better understanding of how each operation is added to the computation graph.

[26]: a = x + 2
b = a ** 2
c = b + 3
y = c.mean()
print("Y", y)

Y tensor(12.6667, grad_fn=<MeanBackward0>)

Using the statements above, we have created a computation graph that looks similar to the figure below:

We calculate 𝑎 based on the inputs 𝑥 and the constant 2, 𝑏 is 𝑎 squared, and so on. The visualization is an abstraction of
the dependencies between inputs and outputs of the operations we have applied. Each node of the computation graph
has automatically defined a function for calculating the gradients with respect to its inputs, grad_fn. You can see this
when we printed the output tensor 𝑦. This is why the computation graph is usually visualized in the reverse direction
(arrows point from the result to the inputs). We can perform backpropagation on the computation graph by calling the
function backward() on the last output, which effectively calculates the gradients for each tensor that has the property
requires_grad=True:

[27]: y.backward()

x.grad will now contain the gradient 𝜕𝑦/𝜕S, and this gradient indicates how a change in x will affect output 𝑦 given
the current input x = [0, 1, 2]:

14 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

[28]: print(x.grad)

tensor([1.3333, 2.0000, 2.6667])

We can also verify these gradients by hand. We will calculate the gradients using the chain rule, in the same way as
PyTorch did it:

𝜕𝑦

𝜕𝑥𝑖
=

𝜕𝑦

𝜕𝑐𝑖

𝜕𝑐𝑖
𝜕𝑏𝑖

𝜕𝑏𝑖
𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑥𝑖

Note that we have simplified this equation to index notation, and by using the fact that all operation besides the mean
do not combine the elements in the tensor. The partial derivatives are:

𝜕𝑎𝑖
𝜕𝑥𝑖

= 1,
𝜕𝑏𝑖
𝜕𝑎𝑖

= 2 · 𝑎𝑖
𝜕𝑐𝑖
𝜕𝑏𝑖

= 1
𝜕𝑦

𝜕𝑐𝑖
=

1

3

Hence, with the input being x = [0, 1, 2], our gradients are 𝜕𝑦/𝜕x = [4/3, 2, 8/3]. The previous code cell should have
printed the same result.

GPU support

A crucial feature of PyTorch is the support of GPUs, short for Graphics Processing Unit. A GPU can perform many
thousands of small operations in parallel, making it very well suitable for performing large matrix operations in neural
networks. When comparing GPUs to CPUs, we can list the following main differences (credit: Kevin Krewell, 2009)

CPUs and GPUs have both different advantages and disadvantages, which is why many computers contain both com-
ponents and use them for different tasks. In case you are not familiar with GPUs, you can read up more details in this
NVIDIA blog post or here.

GPUs can accelerate the training of your network up to a factor of 100 which is essential for large neural networks.
PyTorch implements a lot of functionality for supporting GPUs (mostly those of NVIDIA due to the libraries CUDA
and cuDNN). First, let’s check whether you have a GPU available:

[29]: gpu_avail = torch.cuda.is_available()
print(f"Is the GPU available? {gpu_avail}")

Is the GPU available? True

If you have a GPU on your computer but the command above returns False, make sure you have the correct CUDA-
version installed. The dl2021 environment comes with the CUDA-toolkit 11.3, which is selected for the Lisa super-
computer. Please change it if necessary (CUDA 11.1 is currently common on Colab). On Google Colab, make sure that
you have selected a GPU in your runtime setup (in the menu, check under Runtime -> Change runtime type).

3.1. Tutorial: Introduction to PyTorch 15

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

ASCI CBL Practicals, Release v1.0

By default, all tensors you create are stored on the CPU. We can push a tensor to the GPU by using the function .to(.
..), or .cuda(). However, it is often a good practice to define a device object in your code which points to the GPU
if you have one, and otherwise to the CPU. Then, you can write your code with respect to this device object, and it
allows you to run the same code on both a CPU-only system, and one with a GPU. Let’s try it below. We can specify
the device as follows:

[30]: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print("Device", device)

Device cuda

Now let’s create a tensor and push it to the device:

[31]: x = torch.zeros(2, 3)
x = x.to(device)
print("X", x)

X tensor([[0., 0., 0.],
[0., 0., 0.]], device='cuda:0')

In case you have a GPU, you should now see the attribute device='cuda:0' being printed next to your tensor. The zero
next to cuda indicates that this is the zero-th GPU device on your computer. PyTorch also supports multi-GPU systems,
but this you will only need once you have very big networks to train (if interested, see the PyTorch documentation).
We can also compare the runtime of a large matrix multiplication on the CPU with a operation on the GPU:

[32]: x = torch.randn(5000, 5000)

CPU version
start_time = time.time()
_ = torch.matmul(x, x)
end_time = time.time()
print(f"CPU time: {(end_time - start_time):6.5f}s")

GPU version
x = x.to(device)
CUDA is asynchronous, so we need to use different timing functions
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
_ = torch.matmul(x, x)
end.record()
torch.cuda.synchronize() # Waits for everything to finish running on the GPU
print(f"GPU time: {0.001 * start.elapsed_time(end):6.5f}s") # Milliseconds to seconds

CPU time: 0.20055s
GPU time: 0.00760s

Depending on the size of the operation and the CPU/GPU in your system, the speedup of this operation can be >50x.
As matmul operations are very common in neural networks, we can already see the great benefit of training a NN on
a GPU. The time estimate can be relatively noisy here because we haven’t run it for multiple times. Feel free to extend
this, but it also takes longer to run.

When generating random numbers, the seed between CPU and GPU is not synchronized. Hence, we need to set the
seed on the GPU separately to ensure a reproducible code. Note that due to different GPU architectures, running the
same code on different GPUs does not guarantee the same random numbers. Still, we don’t want that our code gives
us a different output every time we run it on the exact same hardware. Hence, we also set the seed on the GPU:

16 Chapter 3. Report submission

https://pytorch.org/docs/stable/distributed.html#distributed-basics

ASCI CBL Practicals, Release v1.0

[33]: # GPU operations have a separate seed we also want to set
if torch.cuda.is_available():

torch.cuda.manual_seed(42)
torch.cuda.manual_seed_all(42)

Additionally, some operations on a GPU are implemented stochastic for efficiency
We want to ensure that all operations are deterministic on GPU (if used) for␣
→˓reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

3.1.2 Learning by example: Continuous XOR

If we want to build a neural network in PyTorch, we could specify all our parameters (weight matrices, bias vectors)
using Tensors (with requires_grad=True), ask PyTorch to calculate the gradients and then adjust the parameters.
But things can quickly get cumbersome if we have a lot of parameters. In PyTorch, there is a package called torch.nn
that makes building neural networks more convenient.

We will introduce the libraries and all additional parts you might need to train a neural network in PyTorch, using a
simple example classifier on a simple yet well known example: XOR. Given two binary inputs 𝑥1 and 𝑥2, the label to
predict is 1 if either 𝑥1 or 𝑥2 is 1 while the other is 0, or the label is 0 in all other cases. The example became famous
by the fact that a single neuron, i.e. a linear classifier, cannot learn this simple function. Hence, we will learn how to
build a small neural network that can learn this function. To make it a little bit more interesting, we move the XOR into
continuous space and introduce some gaussian noise on the binary inputs. Our desired separation of an XOR dataset
could look as follows:

The model

The package torch.nn defines a series of useful classes like linear networks layers, activation functions, loss functions
etc. A full list can be found here. In case you need a certain network layer, check the documentation of the package
first before writing the layer yourself as the package likely contains the code for it already. We import it below:

[34]: import torch.nn as nn

Additionally to torch.nn, there is also torch.nn.functional. It contains functions that are used in network layers.
This is in contrast to torch.nn which defines them as nn.Modules (more on it below), and torch.nn actually uses
a lot of functionalities from torch.nn.functional. Hence, the functional package is useful in many situations, and
so we import it as well here.

[35]: import torch.nn.functional as F

3.1. Tutorial: Introduction to PyTorch 17

https://pytorch.org/docs/stable/nn.html

ASCI CBL Practicals, Release v1.0

nn.Module

In PyTorch, a neural network is built up out of modules. Modules can contain other modules, and a neural network is
considered to be a module itself as well. The basic template of a module is as follows:

[36]: class MyModule(nn.Module):

def __init__(self):
super().__init__()
Some init for my module

def forward(self, x):
Function for performing the calculation of the module.
pass

The forward function is where the computation of the module is taken place, and is executed when you call the mod-
ule (nn = MyModule(); nn(x)). In the init function, we usually create the parameters of the module, using nn.
Parameter, or defining other modules that are used in the forward function. The backward calculation is done auto-
matically, but could be overwritten as well if wanted.

Simple classifier

We can now make use of the pre-defined modules in the torch.nn package, and define our own small neural network.
We will use a minimal network with a input layer, one hidden layer with tanh as activation function, and a output layer.
In other words, our networks should look something like this:

The input neurons are shown in blue, which represent the coordinates 𝑥1 and 𝑥2 of a data point. The hidden neurons
including a tanh activation are shown in white, and the output neuron in red. In PyTorch, we can define this as follows:

[37]: class SimpleClassifier(nn.Module):

def __init__(self, num_inputs, num_hidden, num_outputs):
super().__init__()
Initialize the modules we need to build the network
self.linear1 = nn.Linear(num_inputs, num_hidden)
self.act_fn = nn.Tanh()
self.linear2 = nn.Linear(num_hidden, num_outputs)

def forward(self, x):
Perform the calculation of the model to determine the prediction
x = self.linear1(x)
x = self.act_fn(x)
x = self.linear2(x)
return x

For the examples in this notebook, we will use a tiny neural network with two input neurons and four hidden neurons.
As we perform binary classification, we will use a single output neuron. Note that we do not apply a sigmoid on the
output yet. This is because other functions, especially the loss, are more efficient and precise to calculate on the original
outputs instead of the sigmoid output. We will discuss the detailed reason later.

18 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

[38]: model = SimpleClassifier(num_inputs=2, num_hidden=4, num_outputs=1)
Printing a module shows all its submodules
print(model)

SimpleClassifier(
(linear1): Linear(in_features=2, out_features=4, bias=True)
(act_fn): Tanh()
(linear2): Linear(in_features=4, out_features=1, bias=True)

)

Printing the model lists all submodules it contains. The parameters of a module can be obtained by using its
parameters() functions, or named_parameters() to get a name to each parameter object. For our small neural
network, we have the following parameters:

[39]: for name, param in model.named_parameters():
print(f"Parameter {name}, shape {param.shape}")

Parameter linear1.weight, shape torch.Size([4, 2])
Parameter linear1.bias, shape torch.Size([4])
Parameter linear2.weight, shape torch.Size([1, 4])
Parameter linear2.bias, shape torch.Size([1])

Each linear layer has a weight matrix of the shape [output, input], and a bias of the shape [output]. The tanh
activation function does not have any parameters. Note that parameters are only registered for nn.Module objects that
are direct object attributes, i.e. self.a = If you define a list of modules, the parameters of those are not registered
for the outer module and can cause some issues when you try to optimize your module. There are alternatives, like
nn.ModuleList, nn.ModuleDict and nn.Sequential, that allow you to have different data structures of modules.
We will use them in a few later tutorials and explain them there.

The data

PyTorch also provides a few functionalities to load the training and test data efficiently, summarized in the package
torch.utils.data.

[40]: import torch.utils.data as data

The data package defines two classes which are the standard interface for handling data in PyTorch: data.Dataset,
and data.DataLoader. The dataset class provides an uniform interface to access the training/test data, while the data
loader makes sure to efficiently load and stack the data points from the dataset into batches during training.

The dataset class

The dataset class summarizes the basic functionality of a dataset in a natural way. To define a dataset in PyTorch, we
simply specify two functions: __getitem__, and __len__. The get-item function has to return the 𝑖-th data point in
the dataset, while the len function returns the size of the dataset. For the XOR dataset, we can define the dataset class
as follows:

[41]: class XORDataset(data.Dataset):

def __init__(self, size, std=0.1):
"""
Inputs:

(continues on next page)

3.1. Tutorial: Introduction to PyTorch 19

ASCI CBL Practicals, Release v1.0

(continued from previous page)

size - Number of data points we want to generate
std - Standard deviation of the noise (see generate_continuous_xor function)

"""
super().__init__()
self.size = size
self.std = std
self.generate_continuous_xor()

def generate_continuous_xor(self):
Each data point in the XOR dataset has two variables, x and y, that can be␣

→˓either 0 or 1
The label is their XOR combination, i.e. 1 if only x or only y is 1 while the␣

→˓other is 0.
If x=y, the label is 0.
data = torch.randint(low=0, high=2, size=(self.size, 2), dtype=torch.float32)
label = (data.sum(dim=1) == 1).to(torch.long)
To make it slightly more challenging, we add a bit of gaussian noise to the␣

→˓data points.
data += self.std * torch.randn(data.shape)

self.data = data
self.label = label

def __len__(self):
Number of data point we have. Alternatively self.data.shape[0], or self.label.

→˓shape[0]
return self.size

def __getitem__(self, idx):
Return the idx-th data point of the dataset
If we have multiple things to return (data point and label), we can return␣

→˓them as tuple
data_point = self.data[idx]
data_label = self.label[idx]
return data_point, data_label

Let’s try to create such a dataset and inspect it:

[42]: dataset = XORDataset(size=200)
print("Size of dataset:", len(dataset))
print("Data point 0:", dataset[0])

Size of dataset: 200
Data point 0: (tensor([0.9632, 0.1117]), tensor(1))

To better relate to the dataset, we visualize the samples below.

[43]: def visualize_samples(data, label):
if isinstance(data, torch.Tensor):

data = data.cpu().numpy()
if isinstance(label, torch.Tensor):

label = label.cpu().numpy()
data_0 = data[label == 0]

(continues on next page)

20 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

data_1 = data[label == 1]

plt.figure(figsize=(4,4))
plt.scatter(data_0[:,0], data_0[:,1], edgecolor="#333", label="Class 0")
plt.scatter(data_1[:,0], data_1[:,1], edgecolor="#333", label="Class 1")
plt.title("Dataset samples")
plt.ylabel(r"x_2")
plt.xlabel(r"x_1")
plt.legend()

[44]: visualize_samples(dataset.data, dataset.label)
plt.show()

0.0 0.5 1.0
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x 2

Dataset samples

Class 0
Class 1

The data loader class

The class torch.utils.data.DataLoader represents a Python iterable over a dataset with support for automatic
batching, multi-process data loading and many more features. The data loader communicates with the dataset using
the function __getitem__, and stacks its outputs as tensors over the first dimension to form a batch. In contrast to
the dataset class, we usually don’t have to define our own data loader class, but can just create an object of it with the
dataset as input. Additionally, we can configure our data loader with the following input arguments (only a selection,
see full list here):

• batch_size: Number of samples to stack per batch

• shuffle: If True, the data is returned in a random order. This is important during training for introducing
stochasticity.

• num_workers: Number of subprocesses to use for data loading. The default, 0, means that the data will be loaded

3.1. Tutorial: Introduction to PyTorch 21

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

ASCI CBL Practicals, Release v1.0

in the main process which can slow down training for datasets where loading a data point takes a considerable
amount of time (e.g. large images). More workers are recommended for those, but can cause issues on Windows
computers. For tiny datasets as ours, 0 workers are usually faster.

• pin_memory: If True, the data loader will copy Tensors into CUDA pinned memory before returning them. This
can save some time for large data points on GPUs. Usually a good practice to use for a training set, but not
necessarily for validation and test to save memory on the GPU.

• drop_last: If True, the last batch is dropped in case it is smaller than the specified batch size. This occurs when
the dataset size is not a multiple of the batch size. Only potentially helpful during training to keep a consistent
batch size.

Let’s create a simple data loader below:

[45]: data_loader = data.DataLoader(dataset, batch_size=8, shuffle=True)

[46]: # next(iter(...)) catches the first batch of the data loader
If shuffle is True, this will return a different batch every time we run this cell
For iterating over the whole dataset, we can simple use "for batch in data_loader: ..."
data_inputs, data_labels = next(iter(data_loader))

The shape of the outputs are [batch_size, d_1,...,d_N] where d_1,...,d_N are the
dimensions of the data point returned from the dataset class
print("Data inputs", data_inputs.shape, "\n", data_inputs)
print("Data labels", data_labels.shape, "\n", data_labels)

Data inputs torch.Size([8, 2])
tensor([[-0.0890, 0.8608],

[1.0905, -0.0128],
[0.7967, 0.2268],
[-0.0688, 0.0371],
[0.8732, -0.2240],
[-0.0559, -0.0282],
[0.9277, 0.0978],
[1.0150, 0.9689]])

Data labels torch.Size([8])
tensor([1, 1, 1, 0, 1, 0, 1, 0])

Optimization

After defining the model and the dataset, it is time to prepare the optimization of the model. During training, we will
perform the following steps:

1. Get a batch from the data loader

2. Obtain the predictions from the model for the batch

3. Calculate the loss based on the difference between predictions and labels

4. Backpropagation: calculate the gradients for every parameter with respect to the loss

5. Update the parameters of the model in the direction of the gradients

We have seen how we can do step 1, 2 and 4 in PyTorch. Now, we will look at step 3 and 5.

22 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Loss modules

We can calculate the loss for a batch by simply performing a few tensor operations as those are automatically added
to the computation graph. For instance, for binary classification, we can use Binary Cross Entropy (BCE) which is
defined as follows:

ℒ𝐵𝐶𝐸 = −
∑︁
𝑖

[𝑦𝑖 log 𝑥𝑖 + (1 − 𝑦𝑖) log(1 − 𝑥𝑖)]

where 𝑦 are our labels, and 𝑥 our predictions, both in the range of [0, 1]. However, PyTorch already provides a list of
predefined loss functions which we can use (see here for a full list). For instance, for BCE, PyTorch has two modules:
nn.BCELoss(), nn.BCEWithLogitsLoss(). While nn.BCELoss expects the inputs 𝑥 to be in the range [0, 1], i.e.
the output of a sigmoid, nn.BCEWithLogitsLoss combines a sigmoid layer and the BCE loss in a single class. This
version is numerically more stable than using a plain Sigmoid followed by a BCE loss because of the logarithms applied
in the loss function. Hence, it is adviced to use loss functions applied on “logits” where possible (remember to not
apply a sigmoid on the output of the model in this case!). For our model defined above, we therefore use the module
nn.BCEWithLogitsLoss.

[47]: loss_module = nn.BCEWithLogitsLoss()

Stochastic Gradient Descent

For updating the parameters, PyTorch provides the package torch.optim that has most popular optimizers imple-
mented. We will discuss the specific optimizers and their differences later in the course, but will for now use the
simplest of them: torch.optim.SGD. Stochastic Gradient Descent updates parameters by multiplying the gradients
with a small constant, called learning rate, and subtracting those from the parameters (hence minimizing the loss).
Therefore, we slowly move towards the direction of minimizing the loss. A good default value of the learning rate for
a small network as ours is 0.1.

[48]: # Input to the optimizer are the parameters of the model: model.parameters()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

The optimizer provides two useful functions: optimizer.step(), and optimizer.zero_grad(). The step function
updates the parameters based on the gradients as explained above. The function optimizer.zero_grad() sets the
gradients of all parameters to zero. While this function seems less relevant at first, it is a crucial pre-step before
performing backpropagation. If we would call the backward function on the loss while the parameter gradients are
non-zero from the previous batch, the new gradients would actually be added to the previous ones instead of overwriting
them. This is done because a parameter might occur multiple times in a computation graph, and we need to sum the
gradients in this case instead of replacing them. Hence, remember to call optimizer.zero_grad() before calculating
the gradients of a batch.

Training

Finally, we are ready to train our model. As a first step, we create a slightly larger dataset and specify a data loader
with a larger batch size.

[49]: train_dataset = XORDataset(size=2500)
train_data_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)

Now, we can write a small training function. Remember our five steps: load a batch, obtain the predictions, calculate
the loss, backpropagate, and update. Additionally, we have to push all data and model parameters to the device of our
choice (GPU if available). For the tiny neural network we have, communicating the data to the GPU actually takes
much more time than we could save from running the operation on GPU. For large networks, the communication time

3.1. Tutorial: Introduction to PyTorch 23

https://pytorch.org/docs/stable/nn.html#loss-functions

ASCI CBL Practicals, Release v1.0

is significantly smaller than the actual runtime making a GPU crucial in these cases. Still, to practice, we will push the
data to GPU here.

[50]: # Push model to device. Has to be only done once
model.to(device)

[50]: SimpleClassifier(
(linear1): Linear(in_features=2, out_features=4, bias=True)
(act_fn): Tanh()
(linear2): Linear(in_features=4, out_features=1, bias=True)

)

In addition, we set our model to training mode. This is done by calling model.train(). There exist certain modules
that need to perform a different forward step during training than during testing (e.g. BatchNorm and Dropout), and
we can switch between them using model.train() and model.eval().

[51]: def train_model(model, optimizer, data_loader, loss_module, num_epochs=100):
Set model to train mode
model.train()

Training loop
for epoch in tqdm(range(num_epochs)):

for data_inputs, data_labels in data_loader:

Step 1: Move input data to device (only strictly necessary if we use GPU)
data_inputs = data_inputs.to(device)
data_labels = data_labels.to(device)

Step 2: Run the model on the input data
preds = model(data_inputs)
preds = preds.squeeze(dim=1) # Output is [Batch size, 1], but we want [Batch␣

→˓size]

Step 3: Calculate the loss
loss = loss_module(preds, data_labels.float())

Step 4: Perform backpropagation
Before calculating the gradients, we need to ensure that they are all zero.
The gradients would not be overwritten, but actually added to the existing␣

→˓ones.
optimizer.zero_grad()
Perform backpropagation
loss.backward()

Step 5: Update the parameters
optimizer.step()

[52]: train_model(model, optimizer, train_data_loader, loss_module)

0%| | 0/100 [00:00<?, ?it/s]

24 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Saving a model

After finish training a model, we save the model to disk so that we can load the same weights at a later time. For this,
we extract the so-called state_dict from the model which contains all learnable parameters. For our simple model,
the state dict contains the following entries:

[53]: state_dict = model.state_dict()
print(state_dict)

OrderedDict([('linear1.weight', tensor([[-2.6034, -3.3293],
[1.9773, -2.4074],
[-2.5968, -1.5909],
[-0.5714, -0.8096]], device='cuda:0')), ('linear1.bias', tensor([1.4459, -1.

→˓3992, 2.9883, -0.1376], device='cuda:0')), ('linear2.weight', tensor([[-4.4624, 3.
→˓0882, 4.4031, -0.1372]], device='cuda:0')), ('linear2.bias', tensor([-1.6854], device=
→˓'cuda:0'))])

To save the state dictionary, we can use torch.save:

[54]: # torch.save(object, filename). For the filename, any extension can be used
torch.save(state_dict, "our_model.tar")

To load a model from a state dict, we use the function torch.load to load the state dict from the disk, and the module
function load_state_dict to overwrite our parameters with the new values:

[55]: # Load state dict from the disk (make sure it is the same name as above)
state_dict = torch.load("our_model.tar")

Create a new model and load the state
new_model = SimpleClassifier(num_inputs=2, num_hidden=4, num_outputs=1)
new_model.load_state_dict(state_dict)

Verify that the parameters are the same
print("Original model\n", model.state_dict())
print("\nLoaded model\n", new_model.state_dict())

Original model
OrderedDict([('linear1.weight', tensor([[-2.6034, -3.3293],

[1.9773, -2.4074],
[-2.5968, -1.5909],
[-0.5714, -0.8096]], device='cuda:0')), ('linear1.bias', tensor([1.4459, -1.

→˓3992, 2.9883, -0.1376], device='cuda:0')), ('linear2.weight', tensor([[-4.4624, 3.
→˓0882, 4.4031, -0.1372]], device='cuda:0')), ('linear2.bias', tensor([-1.6854], device=
→˓'cuda:0'))])

Loaded model
OrderedDict([('linear1.weight', tensor([[-2.6034, -3.3293],

[1.9773, -2.4074],
[-2.5968, -1.5909],
[-0.5714, -0.8096]])), ('linear1.bias', tensor([1.4459, -1.3992, 2.9883, -0.

→˓1376])), ('linear2.weight', tensor([[-4.4624, 3.0882, 4.4031, -0.1372]])), ('linear2.
→˓bias', tensor([-1.6854]))])

A detailed tutorial on saving and loading models in PyTorch can be found here.

3.1. Tutorial: Introduction to PyTorch 25

https://pytorch.org/tutorials/beginner/saving_loading_models.html

ASCI CBL Practicals, Release v1.0

Evaluation

Once we have trained a model, it is time to evaluate it on a held-out test set. As our dataset consist of randomly generated
data points, we need to first create a test set with a corresponding data loader.

[56]: test_dataset = XORDataset(size=500)
drop_last -> Don't drop the last batch although it is smaller than 128
test_data_loader = data.DataLoader(test_dataset, batch_size=128, shuffle=False, drop_
→˓last=False)

As metric, we will use accuracy which is calculated as follows:

𝑎𝑐𝑐 =
#correct predictions

#all predictions
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP are the true positives, TN true negatives, FP false positives, and FN the fale negatives.

When evaluating the model, we don’t need to keep track of the computation graph as we don’t intend to calculate the
gradients. This reduces the required memory and speed up the model. In PyTorch, we can deactivate the computation
graph using with torch.no_grad(): Remember to additionally set the model to eval mode.

[57]: def eval_model(model, data_loader):
model.eval() # Set model to eval mode
true_preds, num_preds = 0., 0.

with torch.no_grad(): # Deactivate gradients for the following code
for data_inputs, data_labels in data_loader:

Determine prediction of model on dev set
data_inputs, data_labels = data_inputs.to(device), data_labels.to(device)
preds = model(data_inputs)
preds = preds.squeeze(dim=1)
preds = torch.sigmoid(preds) # Sigmoid to map predictions between 0 and 1
pred_labels = (preds >= 0.5).long() # Binarize predictions to 0 and 1

Keep records of predictions for the accuracy metric (true_preds=TP+TN, num_
→˓preds=TP+TN+FP+FN)

true_preds += (pred_labels == data_labels).sum()
num_preds += data_labels.shape[0]

acc = true_preds / num_preds
print(f"Accuracy of the model: {100.0*acc:4.2f}%")

[58]: eval_model(model, test_data_loader)

Accuracy of the model: 100.00%

If we trained our model correctly, we should see a score close to 100% accuracy. However, this is only possible because
of our simple task, and unfortunately, we usually don’t get such high scores on test sets of more complex tasks.

26 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Visualizing classification boundaries

To visualize what our model has learned, we can perform a prediction for every data point in a range of [−0.5, 1.5], and
visualize the predicted class as in the sample figure at the beginning of this section. This shows where the model has
created decision boundaries, and which points would be classified as 0, and which as 1. We therefore get a background
image out of blue (class 0) and orange (class 1). The spots where the model is uncertain we will see a blurry overlap.
The specific code is less relevant compared to the output figure which should hopefully show us a clear separation of
classes:

[59]: @torch.no_grad() # Decorator, same effect as "with torch.no_grad(): ..." over the whole␣
→˓function.
def visualize_classification(model, data, label):

if isinstance(data, torch.Tensor):
data = data.cpu().numpy()

if isinstance(label, torch.Tensor):
label = label.cpu().numpy()

data_0 = data[label == 0]
data_1 = data[label == 1]

fig = plt.figure(figsize=(4,4), dpi=500)
plt.scatter(data_0[:,0], data_0[:,1], edgecolor="#333", label="Class 0")
plt.scatter(data_1[:,0], data_1[:,1], edgecolor="#333", label="Class 1")
plt.title("Dataset samples")
plt.ylabel(r"x_2")
plt.xlabel(r"x_1")
plt.legend()

Let's make use of a lot of operations we have learned above
model.to(device)
c0 = torch.Tensor(to_rgba("C0")).to(device)
c1 = torch.Tensor(to_rgba("C1")).to(device)
x1 = torch.arange(-0.5, 1.5, step=0.01, device=device)
x2 = torch.arange(-0.5, 1.5, step=0.01, device=device)
xx1, xx2 = torch.meshgrid(x1, x2) # Meshgrid function as in numpy
model_inputs = torch.stack([xx1, xx2], dim=-1)
preds = model(model_inputs)
preds = torch.sigmoid(preds)
output_image = (1 - preds) * c0[None,None] + preds * c1[None,None] # Specifying

→˓"None" in a dimension creates a new one
output_image = output_image.cpu().numpy() # Convert to numpy array. This only works␣

→˓for tensors on CPU, hence first push to CPU
plt.imshow(output_image, origin='lower', extent=(-0.5, 1.5, -0.5, 1.5))
plt.grid(False)
return fig

_ = visualize_classification(model, dataset.data, dataset.label)
plt.show()

3.1. Tutorial: Introduction to PyTorch 27

ASCI CBL Practicals, Release v1.0

0.5 0.0 0.5 1.0 1.5
x1

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
x 2

Dataset samples

Class 0
Class 1

The decision boundaries might not look exactly as in the figure in the preamble of this section which can be caused
by running it on CPU or a different GPU architecture. Nevertheless, the result on the accuracy metric should be the
approximately the same.

3.1.3 Additional features we didn’t get to discuss yet

Finally, you are all set to start with your own PyTorch project! In summary, we have looked at how we can build neural
networks in PyTorch, and train and test them on data. However, there is still much more to PyTorch we haven’t discussed
yet. In the comming series of Jupyter notebooks, we will discover more and more functionalities of PyTorch, so that
you also get familiar to PyTorch concepts beyond the basics. If you are already interested in learning more of PyTorch,
we recommend the official tutorial website that contains many tutorials on various topics. Especially logging with
Tensorboard (official tutorial here) is a good practice. Hence, let’s check it shortly out how we could use TensorBoard
in our small example.

TensorBoard logging

TensorBoard is a logging and visualization tool that is a popular choice for training deep learning models. Although
initially published for TensorFlow, TensorBoard is also integrated in PyTorch allowing us to easily use it. First, let’s
import it below.

[60]: # Import tensorboard logger from PyTorch
from torch.utils.tensorboard import SummaryWriter

Load tensorboard extension for Jupyter Notebook, only need to start TB in the notebook
%load_ext tensorboard

28 Chapter 3. Report submission

https://pytorch.org/tutorials/
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

ASCI CBL Practicals, Release v1.0

The last line is required if you want to run TensorBoard directly in the Jupyter Notebook. Otherwise, you can start
TensorBoard from the terminal.

PyTorch’s TensorBoard API is simple to use. We start the logging process by creating a new object, writer =
SummaryWriter(...), where we specify the directory in which the logging file should be saved. With this ob-
ject, we can log different aspects of our model by calling functions of the style writer.add_.... For example, we
can visualize the computation graph with the function writer.add_graph, or add a scalar value like the loss with
writer.add_scalar. Let’s adapt our initial training function with adding a TensorBoard logger below.

[61]: def train_model_with_logger(model, optimizer, data_loader, loss_module, val_dataset, num_
→˓epochs=100, logging_dir='runs/our_experiment'):
Create TensorBoard logger
writer = SummaryWriter(logging_dir)
model_plotted = False

Set model to train mode
model.train()

Training loop
for epoch in tqdm(range(num_epochs)):

epoch_loss = 0.0
for data_inputs, data_labels in data_loader:

Step 1: Move input data to device (only strictly necessary if we use GPU)
data_inputs = data_inputs.to(device)
data_labels = data_labels.to(device)

For the very first batch, we visualize the computation graph in TensorBoard
if not model_plotted:

writer.add_graph(model, data_inputs)
model_plotted = True

Step 2: Run the model on the input data
preds = model(data_inputs)
preds = preds.squeeze(dim=1) # Output is [Batch size, 1], but we want [Batch␣

→˓size]

Step 3: Calculate the loss
loss = loss_module(preds, data_labels.float())

Step 4: Perform backpropagation
Before calculating the gradients, we need to ensure that they are all zero.
The gradients would not be overwritten, but actually added to the existing␣

→˓ones.
optimizer.zero_grad()
Perform backpropagation
loss.backward()

Step 5: Update the parameters
optimizer.step()

Step 6: Take the running average of the loss
epoch_loss += loss.item()

(continues on next page)

3.1. Tutorial: Introduction to PyTorch 29

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Add average loss to TensorBoard
epoch_loss /= len(data_loader)
writer.add_scalar('training_loss',

epoch_loss,
global_step = epoch + 1)

Visualize prediction and add figure to TensorBoard
Since matplotlib figures can be slow in rendering, we only do it every 10th␣

→˓epoch
if (epoch + 1) % 10 == 0:

fig = visualize_classification(model, val_dataset.data, val_dataset.label)
writer.add_figure('predictions',

fig,
global_step = epoch + 1)

writer.close()

Let’s use this method to train a model as before, with a new model and optimizer.

[62]: model = SimpleClassifier(num_inputs=2, num_hidden=4, num_outputs=1).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
train_model_with_logger(model, optimizer, train_data_loader, loss_module, val_
→˓dataset=dataset)

0%| | 0/100 [00:00<?, ?it/s]

The TensorBoard file in the folder runs/our_experiment now contains a loss curve, the computation graph of our
network, and a visualization of the learned predictions over number of epochs. To start the TensorBoard visualizer,
simply run the following statement:

[63]: %tensorboard --logdir runs/our_experiment

30 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

TensorBoard visualizations can help to identify possible issues with your model, and identify situations such as overfit-
ting. You can also track the training progress while a model is training, since the logger automatically writes everything
added to it to the logging file. Feel free to explore the TensorBoard functionalities further, and use it for your practicals.

3.2 Practical 1: Multi-Layer Perceptrons

Open notebook:
Authors: Phillip Lippe

In this practical, you will get a first experience in working with images and neural networks by implementing multi-
layer perceptrons (MLPs). You will experiment with different optimization and regularization strategies to get the best
performance out of your model, and investigate the limitations of using MLPs for image processing. This notebook is
intended to guide you through the practical and you can edit it in any place. If you prefer working with standard python
scripts, feel free to convert this notebook into a python script. To open this notebook on Google Colab, use the button
above. Note that you need to copy this notebook into your own Google Drive to save the notebook and trained models.
Otherwise, your progress will be lost when you close the browser tab.

First of all, let’s start with importing some standard libraries:

[1]: ## Standard libraries
import os
import json
import math
import numpy as np
import copy

(continues on next page)

3.2. Practical 1: Multi-Layer Perceptrons 31

https://github.com/phlippe/asci_cbl_practicals/blob/main/notebooks/1_MLPs.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/main/notebooks/1_MLPs.ipynb

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Imports for plotting
import matplotlib.pyplot as plt
from matplotlib import cm
%matplotlib inline
import seaborn as sns
sns.set()

Progress bar
from tqdm.notebook import tqdm

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim

PyTorch Torchvision
import torchvision
from torchvision.datasets import CIFAR10
from torchvision import transforms

Throughout the practicals, we make use of several datasets and might want to save different models. For this, we
define the two paths below. Adjust the paths as you like, but remember to keep them consistent across practicals to not
download the dataset several times.

[2]: # Path to the folder where the datasets are/should be downloaded (e.g. MNIST)
DATASET_PATH = "../data"
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "../saved_models/practical1"
os.makedirs(CHECKPOINT_PATH, exist_ok=True)

Training deep neural networks is a stochastic process. Hence, every time you run the notebook, you naturally get
different results. To obtain reproducible results, it is highly recommended to set a seed for all stochastic operations.
Hence, let’s define a set_seed function below.

[3]: # Function for setting the seed
def set_seed(seed):

np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():

torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

set_seed(42)

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

Fetching the device that will be used throughout this notebook
device = torch.device("cpu") if not torch.cuda.is_available() else torch.device("cuda:0")
print("Using device", device)

32 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Using device cuda:0

Finally, let’s start with setting up the dataset we will use in this practical: CIFAR10. CIFAR10 is a very popular
dataset for computer vision on low-resolution images (32x32 pixels). The task is to classify images into one of 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Our goal is to develop a neural network
that can solve this task efficiently and accurately. To load the dataset, we can luckily make use of PyTorch’s library
torchvision which provides access to many popular vision datasets and more practical functions. So, let’s load the
dataset below:

[4]: # Dataset statistics for normalizing the input values to zero mean and one std
DATA_MEANS = [0.491, 0.482, 0.447]
DATA_STD = [0.247, 0.243, 0.261]

Transformations are applied on images when we want to access them. Here, we push the␣
→˓images into a tensor
and normalize the values. However, you can use more transformations, like␣
→˓augmentations to prevent overfitting.
Feel free to experiment with augmentations here once you have a first running MLP, but␣
→˓remember to not apply
any augmentations on the test data!
data_transforms = transforms.Compose([transforms.ToTensor(),

transforms.Normalize(DATA_MEANS, DATA_STD)
])

Loading the training dataset. We need to split it into a training and validation part
main_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=data_transforms,␣
→˓download=True)
train_set, val_set = torch.utils.data.random_split(main_dataset, [45000, 5000],␣
→˓generator=torch.Generator().manual_seed(42))

Loading the test set
test_set = CIFAR10(root=DATASET_PATH, train=False, transform=data_transforms,␣
→˓download=True)

Create data loaders for later
train_loader = data.DataLoader(train_set, batch_size=128, shuffle=True, drop_last=True,␣
→˓pin_memory=True, num_workers=3)
val_loader = data.DataLoader(val_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)
test_loader = data.DataLoader(test_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)

Files already downloaded and verified
Files already downloaded and verified

When working with data, it is always recommend to look at the data before blaming your model for not performing
well if the data was incorrectly processed. Hence, let’s plot the first 10 images of the CIFAR10 training dataset:

[5]: NUM_IMAGES = 10
images = [train_set[idx][0] for idx in range(NUM_IMAGES)]
img_grid = torchvision.utils.make_grid(torch.stack(images, dim=0), nrow=5,␣
→˓normalize=True, pad_value=0.5)
img_grid = img_grid.permute(1, 2, 0)

(continues on next page)

3.2. Practical 1: Multi-Layer Perceptrons 33

ASCI CBL Practicals, Release v1.0

(continued from previous page)

plt.figure(figsize=(12,8))
plt.title("Dataset examples from CIFAR10", fontsize=20)
plt.imshow(img_grid)
plt.axis('off')
plt.show()
plt.close()

Now we are all set. So, let’s dive into implementing our own MLP!

3.2.1 Part 1: Implementing the MLP

As a first step, let’s implement a simple MLP.

MLP Module

You can make use of PyTorch’s common functionalities, especially the torch.nn modules might be of help. The
design choices of the MLP (e.g. the activation function) is left up to you, but for an initial setup, we recommend
stacking linear layers with ReLU activation functions in between. Remember to not apply any activation function on
the output.

[]: class MLP(nn.Module):

def __init__(self, input_size=3072, num_classes=10, hidden_sizes=[256, 128]):
"""
Inputs:

input_size - Size of the input images in pixels
num_classes - Number of classes we want to predict. The output size of the␣

→˓MLP
should be num_classes.

hidden_sizes - A list of integers specifying the hidden layer sizes in the␣
→˓MLP.

The MLP should have len(hidden_sizes)+1 linear layers.
(continues on next page)

34 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

"""
super().__init__()
TODO: Create the network based on the specified hidden sizes
raise NotImplementedError

def forward(self, x):
TODO: Apply the MLP on an input
raise NotImplementedError

[]: # Let's test the MLP implementation
input_size = np.random.randint(low=64, high=3072)
num_classes = np.random.randint(low=5, high=20)
hidden_sizes = [np.random.randint(low=32, high=256) for _ in range(np.random.
→˓randint(low=1, high=3))]
my_mlp = MLP(input_size=input_size, num_classes=num_classes, hidden_sizes=hidden_sizes)
my_mlp.to(device)
random_input = torch.randn(32, input_size, device=device)
random_output = my_mlp(random_input)
assert random_output.shape[0] == random_input.shape[0]
assert random_output.shape[1] == num_classes

Optimizer

To gain a better insight in the training of the neural networks, let’s implement our own optimizer. First, we need to
understand what an optimizer actually does. The optimizer is responsible to update the network’s parameters given
the gradients. Hence, we effectively implement a function 𝑤𝑡 = 𝑓(𝑤𝑡−1, 𝑔𝑡, ...) with 𝑤 being the parameters, and
𝑔𝑡 = ∇𝑤(𝑡−1)ℒ(𝑡) the gradients at time step 𝑡. A common, additional parameter to this function is the learning rate,
here denoted by 𝜂. Usually, the learning rate can be seen as the “step size” of the update. A higher learning rate means
that we change the weights more in the direction of the gradients, a smaller means we take shorter steps.

As most optimizers only differ in the implementation of 𝑓 , we can define a template for an optimizer in PyTorch below.
We take as input the parameters of a model and a learning rate. The function zero_grad sets the gradients of all
parameters to zero, which we have to do before calling loss.backward(). Finally, the step() function tells the
optimizer to update all weights based on their gradients. The template is setup below:

[]: class OptimizerTemplate:

def __init__(self, params, lr):
self.params = list(params)
self.lr = lr

def zero_grad(self):
Set gradients of all parameters to zero
for p in self.params:

if p.grad is not None:
p.grad.detach_() # For second-order optimizers important
p.grad.zero_()

@torch.no_grad()
def step(self):

Apply update step to all parameters
(continues on next page)

3.2. Practical 1: Multi-Layer Perceptrons 35

ASCI CBL Practicals, Release v1.0

(continued from previous page)

for p in self.params:
if p.grad is None: # We skip parameters without any gradients

continue
self.update_param(p)

def update_param(self, p):
To be implemented in optimizer-specific classes
raise NotImplementedError

The optimizer we are going to implement is the standard Stochastic Gradient Descent (SGD) with momentum. Plain
SGD updates the parameters using the following equation:

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂 · 𝑔(𝑡)

The concept of momentum replaces the gradient in the update by an exponential average of all past gradients including
the current one, which allows for a smoother training. The gradient update with momentum becomes:

𝑚(𝑡) = 𝛽1𝑚
(𝑡−1) + (1 − 𝛽1) · 𝑔(𝑡)

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂 ·𝑚(𝑡)

Let’s implement the optimizer below:

[]: class SGDMomentum(OptimizerTemplate):

def __init__(self, params, lr, momentum=0.9):
super().__init__(params, lr)
self.momentum = momentum # Corresponds to beta_1 in the equation above
self.param_momentum = {p: torch.zeros_like(p.data) for p in self.params} # Dict␣

→˓to store m_t

def update_param(self, p):
TODO: Implement the gradient update
raise NotImplementedError

To verify that our optimizer is working, let’s create a challenging surface over two parameter dimensions which we
want to optimize to find the optimum:

[]: def pathological_curve_loss(w1, w2):
Example of a pathological curvature. There are many more possible, feel free to␣

→˓experiment here!
x1_loss = torch.tanh(w1)**2 + 0.01 * torch.abs(w1)
x2_loss = torch.sigmoid(w2)
return x1_loss + x2_loss

[]: def plot_curve(curve_fn, x_range=(-5,5), y_range=(-5,5), plot_3d=False, cmap=cm.viridis,␣
→˓title="Pathological curvature"):

fig = plt.figure(figsize=(6, 6))
ax = fig.gca(projection='3d') if plot_3d else fig.gca()

x = torch.arange(x_range[0], x_range[1], (x_range[1]-x_range[0])/100.)
y = torch.arange(y_range[0], y_range[1], (y_range[1]-y_range[0])/100.)
x, y = torch.meshgrid([x,y], indexing='ij')

(continues on next page)

36 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

z = curve_fn(x, y)
x, y, z = x.numpy(), y.numpy(), z.numpy()

if plot_3d:
ax.plot_surface(x, y, z, cmap=cmap, linewidth=1, color="#000", antialiased=False)
ax.set_zlabel("loss")

else:
ax.imshow(z.T[::-1], cmap=cmap, extent=(x_range[0], x_range[1], y_range[0], y_

→˓range[1]))
plt.title(title)
ax.set_xlabel(r"w_1")
ax.set_ylabel(r"w_2")
plt.tight_layout()
return ax

sns.reset_orig()
_ = plot_curve(pathological_curve_loss, plot_3d=True)
plt.show()

In terms of optimization, you can image that 𝑤1 and 𝑤2 are weight parameters, and the curvature represents the loss
surface over the space of 𝑤1 and 𝑤2. Note that in typical networks, we have many, many more parameters than two,
and such curvatures can occur in multi-dimensional spaces as well.

Ideally, our optimization algorithm would find the center of the ravine and focuses on optimizing the parameters towards
the direction of 𝑤2. However, if we encounter a point along the ridges, the gradient is much greater in 𝑤1 than 𝑤2, and
we might end up jumping from one side to the other. Due to the large gradients, we would have to reduce our learning
rate slowing down learning significantly.

To test our algorithms, we can implement a simple function to train two parameters on such a surface:

[]: def train_curve(optimizer_func, curve_func=pathological_curve_loss, num_updates=100,␣
→˓init=[5,5]):
"""
Inputs:

optimizer_func - Constructor of the optimizer to use. Should only take a␣
→˓parameter list

curve_func - Loss function (e.g. pathological curvature)
num_updates - Number of updates/steps to take when optimizing
init - Initial values of parameters. Must be a list/tuple with two elements␣

→˓representing w_1 and w_2
Outputs:

Numpy array of shape [num_updates, 3] with [t,:2] being the parameter values at␣
→˓step t, and [t,2] the loss at t.
"""
weights = nn.Parameter(torch.FloatTensor(init), requires_grad=True)
optimizer = optimizer_func([weights])

list_points = []
for _ in range(num_updates):

TODO: Determine the loss for the current weights, save the weights and loss,␣
→˓perform backpropagation

raise NotImplementedError

(continues on next page)

3.2. Practical 1: Multi-Layer Perceptrons 37

ASCI CBL Practicals, Release v1.0

(continued from previous page)

points = torch.stack(list_points, dim=0).numpy()
return points

Next, let’s apply the optimizer on our curvature. Note that we set a much higher learning rate for the optimization
algorithms as you would in a standard neural network. This is because we only have 2 parameters instead of tens of
thousands or even millions.

[]: SGDMom_points = train_curve(lambda params: SGDMomentum(params, lr=10, momentum=0.9))

To understand best how the different algorithms worked, we visualize the update step as a line plot through the loss
surface. We will stick with a 2D representation for readability.

[]: all_points = SGDMom_points
ax = plot_curve(pathological_curve_loss,

x_range=(-np.absolute(all_points[:,0]).max(), np.absolute(all_points[:,
→˓0]).max()),

y_range=(all_points[:,1].min(), all_points[:,1].max()),
plot_3d=False)

ax.plot(SGDMom_points[:,0], SGDMom_points[:,1], color="red", marker="o", zorder=2, label=
→˓"SGDMom")
plt.legend()
plt.show()

If the implementation is correct, you should see that the optimizer indeed reaches a point of very low 𝑤2 (𝑤2 < −7.5)
and 𝑤1 ≈ 0. If not, go back to your optimizer implementation and check what could go wrong.

Training and validation function

Now that we the MLP ready, the optimizer implemented, and the dataset loaded, we can look at implementing our own
training function. The form of the training function is left mostly up to you, but we recommend that you test the model
on the validation function after every 5 epochs, and save the best model. We provide a rough template below.

[]: def train_model(model, optimizer, train_data_loader, val_data_loader, num_epochs=25,␣
→˓model_name="MyMLP"):
Set model to train mode
model.to(device)
best_val_acc = -1.0

Training loop
for epoch in range(1, num_epochs+1):

model.train()
for imgs, labels in train_data_loader:

TODO: Implement training loop with training on classification
raise NotImplementedError

if epoch % 5 == 0:
TODO: Evaluate the model and save if best
raise NotImplementedError

Load best model after training
load_model(model, model_name)

38 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

[]: @torch.no_grad()
def test_model(model, data_loader):

TODO: Test model and return accuracy
raise NotImplementedError

[]: def save_model(model, model_name):
TODO: Save the parameters of the model
raise NotImplementedError

def load_model(model, model_name):
TODO: Load the parameters of the model
raise NotImplementedError

[]: # TODO: Create model, optimizer, and start training
raise NotImplementedError

[]: # TODO: Test best model on test set
raise NotImplementedError

It is expected that you reach with the default configurations a validation and test accuracy of ∼ 52− 53% . If you have
reached this performance, we can consider this task as completed!

3.2.2 Part 2: Improving your MLP

Now that we have a basic MLP, let’s try to improve over this default performance! Your task is to think about ways to
maximize the performance of your MLP. Possible suggestions you can look at include:

• Do data augmentations help the model to generalize?

• Can regularization techniques (dropout, weight decay, etc.) help?

• Do deeper models perform better? Or is it better to have wide networks?

• Can normalization techniques (BatchNorm, LayerNorm, etc.) help?

Your task is to improve your model to reach at least 56% on the test set! But can you get even above this? Consider
this as a challenge!

For this implementation, you can directly edit your model above. In your report, list the changes that you have made
and discuss what affect they have. Further, repeat the experiment for at least 3 seeds to report stable improvements.

[]: # TODO: Improve the model
raise NotImplementedError

3.2.3 Part 3: Investigating the limitations

Now that we have seen how we can optimize our MLP, it is good to investigate the limitations of the model as well. Im-
ages have a natural grid structure where close-by pixels are strongly related. Does the MLP make use of this structure?
To investigate this question, we will run two experiments:

• Create a shuffle of pixels at the beginning of the training, and use the same shuffle throughout the training and
validation.

• At each training and validation step, sample a new shuffle of pixels.

3.2. Practical 1: Multi-Layer Perceptrons 39

ASCI CBL Practicals, Release v1.0

It is up to you whether you perform this investigation on the original plain MLP version or your optimized one. Imple-
ment a corresponding train and test function that support both variants of shuffling, and train two models.

[]: # TODO: Create a training and test function that supports the shuffling of pixels, both␣
→˓fixed and newly generated for each batch
raise NotImplementedError

[]: # TODO: Create model, optimizer, and start training on fixed shuffling of pixels
raise NotImplementedError

[]: # TODO: Create model, optimizer, and start training on a new shuffling of pixels per␣
→˓batch/image
raise NotImplementedError

What results do you observe? What does this tell us about the MLP being aware of the image structure? Add your
results and observations to your report.

3.2.4 Conclusion

You have reached the end of the practical, congratulations! Now, you should have a good idea of what it means to
train a MLP, how we can use neural networks to perform image classification, and what tricks there are to improve a
networks performance. In the next practicals, we will look at more advanced network structures beyond MLPs.

3.3 Practical 2: Convolutional Neural Networks

Open notebook:
Authors: Phillip Lippe

In this practical, we will implement variants of modern CNN architectures. There have been many different architec-
tures been proposed over the past few years. Some of the most impactful ones, and still relevant today, are the following:
GoogleNet/Inception architecture (winner of ILSVRC 2014), ResNet (winner of ILSVRC 2015), and DenseNet (best
paper award CVPR 2017). All of them were state-of-the-art models when being proposed, and the core ideas of these
networks are the foundations for most current state-of-the-art architectures. Thus, it is important to understand these
architectures and learn how to implement some of them.

Let’s start with importing our standard libraries here.

[1]: ## Standard libraries
import os
import json
import math
import numpy as np
import copy

Imports for plotting
import matplotlib.pyplot as plt
from matplotlib import cm
%matplotlib inline
import seaborn as sns
sns.set()

(continues on next page)

40 Chapter 3. Report submission

https://github.com/phlippe/asci_cbl_practicals/blob/main/notebooks/2_CNNs.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/main/notebooks/2_CNNs.ipynb
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Progress bar
from tqdm.notebook import tqdm

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim

PyTorch Torchvision
import torchvision
from torchvision.datasets import CIFAR10
from torchvision import transforms

We will use the same the path variables DATASET_PATH and CHECKPOINT_PATH. Adjust the paths if necessary.

[2]: # Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)
DATASET_PATH = "../data"
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "../saved_models/practical2"
os.makedirs(CHECKPOINT_PATH, exist_ok=True)

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

Similarly as in the last practical, we use the CIFAR10 dataset and load it below:

[3]: # Dataset statistics for normalizing the input values to zero mean and one std
DATA_MEANS = [0.491, 0.482, 0.447]
DATA_STD = [0.247, 0.243, 0.261]

test_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(DATA_MEANS, DATA_STD)
])

For training, we add some augmentation. Networks are too powerful and would overfit.
train_transform = transforms.Compose([transforms.RandomHorizontalFlip(),

transforms.RandomResizedCrop((32,32),scale=(0.8,1.
→˓0),ratio=(0.9,1.1)),

transforms.ToTensor(),
transforms.Normalize(DATA_MEANS, DATA_STD)
])

Loading the training dataset. We need to split it into a training and validation part
We need to do a little trick because the validation set should not use the␣
→˓augmentation.
train_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=train_transform,␣
→˓download=True)
val_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=test_transform,␣
→˓download=True)

(continues on next page)

3.3. Practical 2: Convolutional Neural Networks 41

ASCI CBL Practicals, Release v1.0

(continued from previous page)

train_set, _ = torch.utils.data.random_split(train_dataset, [45000, 5000],␣
→˓generator=torch.Generator().manual_seed(42))
_, val_set = torch.utils.data.random_split(val_dataset, [45000, 5000], generator=torch.
→˓Generator().manual_seed(42))

Loading the test set
test_set = CIFAR10(root=DATASET_PATH, train=False, transform=test_transform,␣
→˓download=True)

Create data loaders for later. Adjust batch size if you have a smaller GPU
train_loader = data.DataLoader(train_set, batch_size=128, shuffle=True, drop_last=True,␣
→˓pin_memory=True, num_workers=3)
val_loader = data.DataLoader(val_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)
test_loader = data.DataLoader(test_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)

Files already downloaded and verified
Files already downloaded and verified
Files already downloaded and verified

3.3.1 PyTorch Lightning

In this practical and in many following ones, we will make use of the library PyTorch Lightning. PyTorch Lightning is a
framework that simplifies your code needed to train, evaluate, and test a model in PyTorch. It also handles logging into
TensorBoard, a visualization toolkit for ML experiments, and saving model checkpoints automatically with minimal
code overhead from our side. This is extremely helpful for us as we want to focus on implementing different model
architectures and spend little time on other code overhead. Note that at the time of writing/teaching, the framework has
been released in version 1.6. Future versions might have a slightly changed interface and thus might not work perfectly
with the code (we will try to keep it up-to-date as much as possible).

Now, we will take the first step in PyTorch Lightning, and continue to explore the framework in our other tutorials.
First, we import the library:

[4]: # PyTorch Lightning
try:

import pytorch_lightning as pl
except ModuleNotFoundError: # Google Colab does not have PyTorch Lightning installed by␣
→˓default. Hence, we do it here if necessary

!pip install --quiet pytorch-lightning>=1.6
import pytorch_lightning as pl

PyTorch Lightning comes with a lot of useful functions, such as one for setting the seed:

[5]: # Setting the seed
pl.seed_everything(42)

Global seed set to 42

[5]: 42

Thus, in the future, we don’t have to define our own set_seed function anymore.

In PyTorch Lightning, we define pl.LightningModule’s (inheriting from torch.nn.Module) that organize our code
into 5 main sections:

42 Chapter 3. Report submission

https://www.pytorchlightning.ai/
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

ASCI CBL Practicals, Release v1.0

1. Initialization (__init__), where we create all necessary parameters/models

2. Optimizers (configure_optimizers) where we create the optimizers, learning rate scheduler, etc.

3. Training loop (training_step) where we only have to define the loss calculation for a single batch (the loop
of optimizer.zero_grad(), loss.backward() and optimizer.step(), as well as any logging/saving operation, is done
in the background)

4. Validation loop (validation_step) where similarly to the training, we only have to define what should happen
per step

5. Test loop (test_step) which is the same as validation, only on a test set.

Therefore, we don’t abstract the PyTorch code, but rather organize it and define some default operations that are com-
monly used. If you need to change something else in your training/validation/test loop, there are many possible functions
you can overwrite (see the docs for details).

Now we can look at an example of how a Lightning Module for training a CNN looks like:

[6]: class CIFARModule(pl.LightningModule):

def __init__(self, model_hparams, optimizer_hparams):
"""
Inputs:

model_hparams - Hyperparameters for the model, as dictionary.
optimizer_hparams - Hyperparameters for the optimizer, as dictionary. This␣

→˓includes learning rate, weight decay, etc.
"""
super().__init__()
Exports the hyperparameters to a YAML file, and create "self.hparams" namespace
self.save_hyperparameters()
Create model
self.create_model()
Example input for visualizing the graph in Tensorboard
self.example_input_array = torch.zeros((1, 3, 32, 32), dtype=torch.float32)

def create_model(self):
No need to fill this yet, we will do it later in the notebook
Currently this function is a placeholder to create our model
raise NotImplementedError

def forward(self, imgs):
Forward function that is run when visualizing the graph
return self.model(imgs)

def configure_optimizers(self):
Create optimizer
optimizer = optim.SGD(self.parameters(), **self.hparams.optimizer_hparams)
We will reduce the learning rate by 0.1 after 75 and 100 epochs
scheduler = optim.lr_scheduler.MultiStepLR(

optimizer, milestones=[70, 90], gamma=0.1)
return [optimizer], [scheduler]

def training_step(self, batch, batch_idx):
"batch" is the output of the training data loader.
imgs, labels = batch

(continues on next page)

3.3. Practical 2: Convolutional Neural Networks 43

https://pytorch-lightning.readthedocs.io/en/stable/lightning_module.html

ASCI CBL Practicals, Release v1.0

(continued from previous page)

preds = self.model(imgs)
loss = F.cross_entropy(preds, labels)
acc = (preds.argmax(dim=-1) == labels).float().mean()

Logs the accuracy per epoch to tensorboard (weighted average over batches)
self.log('train_acc', acc, on_step=False, on_epoch=True)
self.log('train_loss', loss)
return loss # Return tensor to call ".backward" on

def validation_step(self, batch, batch_idx):
imgs, labels = batch
preds = self.model(imgs).argmax(dim=-1)
acc = (labels == preds).float().mean()
By default logs it per epoch (weighted average over batches)
self.log('val_acc', acc)

def test_step(self, batch, batch_idx):
imgs, labels = batch
preds = self.model(imgs).argmax(dim=-1)
acc = (labels == preds).float().mean()
By default logs it per epoch (weighted average over batches), and returns it␣

→˓afterwards
self.log('test_acc', acc)

We see that the code is organized and clear, which helps if someone else tries to understand your code.

Another important part of PyTorch Lightning is the concept of callbacks. Callbacks are self-contained functions that
contain the non-essential logic of your Lightning Module. They are usually called after finishing a training epoch, but
can also influence other parts of your training loop. For instance, we will use the following two pre-defined callbacks:
LearningRateMonitor and ModelCheckpoint. The learning rate monitor adds the current learning rate to our
TensorBoard, which helps to verify that our learning rate scheduler works correctly. The model checkpoint callback
allows you to customize the saving routine of your checkpoints. For instance, how many checkpoints to keep, when to
save, which metric to look out for, etc. We import them below:

[7]: # Callbacks
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint

Besides the Lightning module, the second most important module in PyTorch Lightning is the Trainer. The trainer is
responsible to execute the training steps defined in the Lightning module and completes the framework. Similar to the
Lightning module, you can override any key part that you don’t want to be automated, but the default settings are often
the best practice to do. For a full overview, see the documentation. The most important functions we use below are:

• trainer.fit: Takes as input a lightning module, a training dataset, and an (optional) validation dataset. This
function trains the given module on the training dataset with occasional validation (default once per epoch, can
be changed)

• trainer.test: Takes as input a model and a dataset on which we want to test. It returns the test metric on the
dataset.

For training and testing, we don’t have to worry about things like setting the model to eval mode (model.eval()) as
this is all done automatically. See below how we define a training function for our models:

[8]: def train_model(save_name, data_loaders, max_epochs=100, **kwargs):
"""

(continues on next page)

44 Chapter 3. Report submission

https://pytorch-lightning.readthedocs.io/en/stable/trainer.html

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Inputs:
model_name - Name of the model you want to run. Is used to look up the class in

→˓"model_dict"
save_name (optional) - If specified, this name will be used for creating the␣

→˓checkpoint and logging directory.
"""
Create a PyTorch Lightning trainer with the generation callback
trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH, save_name), ␣

→˓ # Where to save models
gpus=1 if str(device)=="cuda:0" else 0, ␣

→˓ # We run on a single GPU (if possible)
max_epochs=max_epochs, ␣

→˓ # How many epochs to train for if no patience is set
callbacks=[ModelCheckpoint(save_weights_only=True, mode="max",␣

→˓monitor="val_acc"), # Save the best checkpoint based on the maximum val_acc recorded.␣
→˓Saves only weights and not optimizer

LearningRateMonitor("epoch")], ␣
→˓ # Log learning rate every epoch

check_val_every_n_epoch=10) ␣
→˓ # Frequency with which we evaluate the model

trainer.logger._log_graph = True # If True, we plot the computation graph in␣
→˓tensorboard

trainer.logger._default_hp_metric = None # Optional logging argument that we don't␣
→˓need

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, save_name + ".ckpt")
if os.path.isfile(pretrained_filename):

print(f"Found pretrained model at {pretrained_filename}, loading...")
model = CIFARModule.load_from_checkpoint(pretrained_filename) # Automatically␣

→˓loads the model with the saved hyperparameters
else:

pl.seed_everything(42) # To be reproducable
model = CIFARModule(**kwargs)
trainer.fit(model, data_loaders['train'], data_loaders['val'])
model = CIFARModule.load_from_checkpoint(trainer.checkpoint_callback.best_model_

→˓path) # Load best checkpoint after training

Test best model on validation and test set
val_result = trainer.test(model, data_loaders['val'], verbose=False)
test_result = trainer.test(model, data_loaders['test'], verbose=False)
result = {"test": test_result[0]["test_acc"], "val": val_result[0]["test_acc"]}

return model, result

This setup simplifies our training a lot, and we recommend using PyTorch Lightning for future practicals as well.

3.3. Practical 2: Convolutional Neural Networks 45

ASCI CBL Practicals, Release v1.0

3.3.2 Part 1: ResNet

In the first part of the practical, you will implement a small ResNet. The ResNet paper is one of the most cited AI
papers, and has been the foundation for neural networks with more than 1,000 layers. Despite its simplicity, the idea
of residual connections is highly effective as it supports stable gradient propagation through the network. Instead of
modeling 𝑥𝑙+1 = 𝐹 (𝑥𝑙), we model 𝑥𝑙+1 = 𝑥𝑙 + 𝐹 (𝑥𝑙) where 𝐹 is a non-linear mapping (usually a sequence of
NN modules likes convolutions, activation functions, and normalizations). If we do backpropagation on such residual
connections, we obtain:

𝜕𝑥𝑙+1

𝜕𝑥𝑙
= I +

𝜕𝐹 (𝑥𝑙)

𝜕𝑥𝑙

The bias towards the identity matrix guarantees a stable gradient propagation being less effected by 𝐹 itself. There
have been many variants of ResNet proposed, which mostly concern the function 𝐹 , or operations applied on the sum.
In this tutorial, we look at two of them: the original ResNet block, and the Pre-Activation ResNet block. We visually
compare the blocks below (figure credit - He et al.):

The original ResNet block applies a non-linear activation function, usually ReLU, after the skip connection. In contrast,
the pre-activation ResNet block applies the non-linearity at the beginning of 𝐹 . Both have their advantages and disad-
vantages. For very deep network, however, the pre-activation ResNet has shown to perform better as the gradient flow
is guaranteed to have the identity matrix as calculated above, and is not harmed by any non-linear activation applied to
it. For comparison, in this notebook, we implement both ResNet types as shallow networks.

For this practical, we will use the Pre-Activation ResNet block. The visualization above already shows what layers are
included in 𝐹 . One special case we have to handle is when we want to reduce the image dimensions in terms of width
and height. The ResNet block requires 𝐹 (𝑥𝑙) to be of the same shape as 𝑥𝑙. Thus, we need to change the dimensionality
of 𝑥𝑙 as well before adding to 𝐹 (𝑥𝑙). The original implementation used an identity mapping with stride 2 and padded
additional feature dimensions with 0. However, the more common implementation is to use a 1x1 convolution with
stride 2 as it allows us to change the feature dimensionality while being efficient in parameter and computation cost.
Let’s try to implement the ResNet block below:

[]: class PreActResNetBlock(nn.Module):

def __init__(self, c_in, subsample=False, c_out=-1):
"""
Inputs:

c_in - Number of input features
subsample - If True, we want to apply a stride inside the block and reduce␣

→˓the output shape by 2 in height and width
c_out - Number of output features. Note that this is only relevant if␣

→˓subsample is True, as otherwise, c_out = c_in
"""
super().__init__()
TODO: Implement the network of the pre-activation ResNet block
raise NotImplementedError

def forward(self, x):
TODO: Implement the forward pass of the Pre-Activation ResNet block
raise NotImplementedError

[]: # Testing the ResNet block
c_in = np.random.randint(low=16, high=64)
module = PreActResNetBlock(c_in=c_in, subsample=False)

(continues on next page)

46 Chapter 3. Report submission

https://arxiv.org/abs/1512.03385
https://www.natureindex.com/news-blog/google-scholar-reveals-most-influential-papers-research-citations-twenty-twenty
https://www.natureindex.com/news-blog/google-scholar-reveals-most-influential-papers-research-citations-twenty-twenty
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027

ASCI CBL Practicals, Release v1.0

(continued from previous page)

module.to(device)
img = torch.randn(4, c_in, 32, 32, device=device)
out = module(img)
for i in range(len(img.shape)):

assert out.shape[i] == img.shape[i], f'Disagreement in shapes: output={out.shape},␣
→˓input={img.shape}'

c_out = np.random.randint(low=16, high=64)
module = PreActResNetBlock(c_in=c_in, subsample=True, c_out=c_out)
module.to(device)
img = torch.randn(4, c_in, 32, 32, device=device)
out = module(img)
assert out.shape[1] == c_out
assert out.shape[2] == img.shape[2]//2
assert out.shape[3] == img.shape[3]//2

Now that we have the ResNet block, let’s implement the full ResNet. The overall ResNet architecture consists of
stacking multiple ResNet blocks, of which some are downsampling the input. When talking about ResNet blocks in the
whole network, we usually group them by the same output shape. Hence, if we say the ResNet has [3,3,3] blocks, it
means that we have 3 times a group of 3 ResNet blocks, where a subsampling is taking place in the fourth and seventh
block. The ResNet with [3,3,3] blocks on CIFAR10 is visualized below.

The three groups operate on the resolutions 32 × 32, 16 × 16 and 8 × 8 respectively. The blocks in orange denote
ResNet blocks with downsampling. Additionally to these blocks, we have one initial convolution that maps the 3 color
channels to the initial hidden channels, and a final linear layer after an average pooling over all features. Let’s implement
it below:

[]: class ResNet(nn.Module):

def __init__(self, num_classes=10, num_blocks=[3,3,3], c_hidden=[16,24,32]):
"""
Inputs:

num_classes - Number of classification outputs (10 for CIFAR10)
num_blocks - List with the number of ResNet blocks to use. The first block␣

→˓of each group uses downsampling, except the first.
c_hidden - List with the hidden dimensionalities in the different blocks.

"""
super().__init__()
self.num_classes = num_classes
self.num_blocks = num_blocks
self.c_hidden = c_hidden
self._create_network()
self._init_params()

def _create_network(self):
TODO: Create network with stacking blocks
raise NotImplementedError

def _init_params(self):
Fan-out focuses on the gradient distribution, and is commonly used in ResNets
for m in self.modules():

(continues on next page)

3.3. Practical 2: Convolutional Neural Networks 47

ASCI CBL Practicals, Release v1.0

(continued from previous page)

if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def forward(self, x):
TODO: Implement forward of ResNet
raise NotImplementedError

[]: # Testing the ResNet
num_classes = np.random.randint(low=5, high=20)
model = ResNet(num_classes=num_classes)
model.to(device)
img = torch.randn(4, 3, 32, 32, device=device)
out = model(img)
assert len(out.shape) == 2
assert out.shape[0] == img.shape[0]
assert out.shape[1] == num_classes

Now that we have all together, let’s train the model. First, we need to define the create_model function in the
CIFARModule:

[]: def create_resnet(self):
self.model = ResNet(num_classes=self.hparams.model_hparams['num_classes'],

num_blocks=self.hparams.model_hparams['num_blocks'],
c_hidden=self.hparams.model_hparams['c_hidden'])

CIFARModule.create_model = create_resnet

We call the training function below to start the training. We provide default parameters that should allow you to quickly
train the model, but feel free to optimize the hyperparameters. For a final run in your report, please use 100 epochs.

[]: resnet_model, resnet_results = train_model(save_name='ResNet',
max_epochs=10,
model_hparams={"num_classes": 10,

"c_hidden": [16,24,32],
"num_blocks": [2,2,3]},

optimizer_hparams={"lr": 0.1,
"momentum": 0.9,
"weight_decay": 1e-4},

data_loaders={"train": train_loader,
"val": val_loader,
"test": test_loader})

[]: print(resnet_results)

Instead of just seeing the test result, it is recommended to also take a look at the TensorBoard log:

[]: %load_ext tensorboard
%tensorboard --logdir ../saved_models/practical2/ResNet/

48 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

3.3.3 Part 2: Rotational Invariance

A common argument for CNNs over MLPs is that they have the inductive bias of being (approximately) shift invariant.
If we move the image by one pixel to the left, most features remain unchanged and also just shift by one position.
However, what about more complex transformations, like rotations? Your task in this part of the practical is to take
the trained ResNet, and investigate how its test accuracy changes when you rotate the images. Create a plot of the
validation accuracy over rotation angles (0 to 360 degree in steps of 10 degree).

[]: @torch.no_grad()
def test_model_rotated(model, rotation_angle=0.0):

TODO: Evaluate model on images that have been rotated.
You might want to use torchvision.transforms.functional.rotate
raise NotImplementedError

[]: # TODO: Determine results
raise NotImplementedError

[]: # TODO: Plot results
raise NotImplementedError

What do these results indicate? Add this plot in your report and discuss it.

3.3.4 Part 3: Pixel shuffling

In the first practical, we have investigated how the MLP reacts to shuffling the pixels of all images with a fixed, ran-
dom permutation. Now, let’s repeat this experiment for the CNNs. Does the CNN exploit the structural information
differently than the MLP?

The first step is to create datasets with a new shuffling of pixels:

[]: # TODO: Create datasets and data loaders with a fixed, random shuffle of pixels
raise NotImplementedError

Next, we can start the training of the model. You can limit your number of epochs to a smaller number like 10.

[]: # TODO: Create datasets and data loaders with a fixed, random shuffle of pixels
raise NotImplementedError

[]: # TODO: Print the results and look at your tensorboard
raise NotImplementedError

Add your observations to your report and discuss what this implies for CNNs.

3.3.5 Conclusion

In this practical, you gained some handson experience with CNNs on computer vision for classification. Your exper-
iments probably give you a good indication why CNNs are a very popular choice for computer vision problems, but
also what they can and cannot do.

3.3. Practical 2: Convolutional Neural Networks 49

ASCI CBL Practicals, Release v1.0

3.4 Practical 3: Vision Transformers

Open notebook:
Authors: Phillip Lippe

In this practical, we will take a closer look at a recent new trend: Transformers for Computer Vision. Since Alexey
Dosovitskiy et al. successfully applied a Transformer on a variety of image recognition benchmarks, there have been
an incredible amount of follow-up works showing that CNNs might not be optimal architecture for Computer Vision
anymore. But how do Vision Transformers work exactly, and what benefits and drawbacks do they offer in contrast to
CNNs? We will answer these questions by implementing a Vision Transformer ourselves and train it on the popular,
small dataset CIFAR10.

Let’s start with importing our standard set of libraries.

[1]: ## Standard libraries
import os
import numpy as np
import random
import math
import json
from functools import partial
from PIL import Image

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.reset_orig()

tqdm for loading bars
from tqdm.notebook import tqdm

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim

Torchvision
import torchvision
from torchvision.datasets import CIFAR10
from torchvision import transforms

PyTorch Lightning
try:

import pytorch_lightning as pl
except ModuleNotFoundError: # Google Colab does not have PyTorch Lightning installed by␣
→˓default. Hence, we do it here if necessary

!pip install --quiet pytorch-lightning>=1.6
import pytorch_lightning as pl

from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
(continues on next page)

50 Chapter 3. Report submission

https://github.com/phlippe/asci_cbl_practicals/blob/main/notebooks/3_Vision_Transformers.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/main/notebooks/3_Vision_Transformers.ipynb
https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Import tensorboard
%load_ext tensorboard

Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)
DATASET_PATH = "../data"
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "../saved_models/practical3"

Setting the seed
pl.seed_everything(42)

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)

Global seed set to 42

Device: cuda:0

We load the CIFAR10 dataset below.

[2]: # Dataset statistics for normalizing the input values to zero mean and one std
DATA_MEANS = [0.491, 0.482, 0.447]
DATA_STD = [0.247, 0.243, 0.261]

test_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(DATA_MEANS, DATA_STD)
])

For training, we add some augmentation. Networks are too powerful and would overfit.
train_transform = transforms.Compose([transforms.RandomHorizontalFlip(),

transforms.RandomResizedCrop((32,32),scale=(0.8,1.
→˓0),ratio=(0.9,1.1)),

transforms.ToTensor(),
transforms.Normalize(DATA_MEANS, DATA_STD)
])

Loading the training dataset. We need to split it into a training and validation part
We need to do a little trick because the validation set should not use the␣
→˓augmentation.
train_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=train_transform,␣
→˓download=True)
val_dataset = CIFAR10(root=DATASET_PATH, train=True, transform=test_transform,␣
→˓download=True)
train_set, _ = torch.utils.data.random_split(train_dataset, [45000, 5000],␣
→˓generator=torch.Generator().manual_seed(42))
_, val_set = torch.utils.data.random_split(val_dataset, [45000, 5000], generator=torch.
→˓Generator().manual_seed(42))

Loading the test set
test_set = CIFAR10(root=DATASET_PATH, train=False, transform=test_transform,␣
→˓download=True) (continues on next page)

3.4. Practical 3: Vision Transformers 51

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Create data loaders for later. Adjust batch size if you have a smaller GPU
train_loader = data.DataLoader(train_set, batch_size=128, shuffle=True, drop_last=True,␣
→˓pin_memory=True, num_workers=3)
val_loader = data.DataLoader(val_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)
test_loader = data.DataLoader(test_set, batch_size=128, shuffle=False, drop_last=False,␣
→˓num_workers=3)

Files already downloaded and verified
Files already downloaded and verified
Files already downloaded and verified

[3]: # For later, we keep a set of example images
CIFAR_images = torch.stack([val_set[idx][0] for idx in range(4)], dim=0)
img_grid = torchvision.utils.make_grid(CIFAR_images, nrow=4, normalize=True, pad_value=0.
→˓9)
img_grid = img_grid.permute(1, 2, 0)

plt.figure(figsize=(12,8))
plt.title("Image examples of the CIFAR10 dataset", fontsize=20)
plt.imshow(img_grid)
plt.axis('off')
plt.show()
plt.close()

3.4.1 Part 1: Building a Transformer for image classification

Transformers have been originally proposed to process sets since it is a permutation-equivariant architecture, i.e., pro-
ducing the same output permuted if the input is permuted. To apply Transformers to sequences, one commonly adds
a positional encoding to the input feature vectors, and the model learns by itself what to do with it. So, why not do
the same thing on images? This is exactly what Alexey Dosovitskiy et al. proposed in their paper “An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale”. Specifically, the Vision Transformer is a model for im-
age classification that views images as sequences of smaller patches. As a preprocessing step, we split an image of,
for example, 48 × 48 pixels into 9 16 × 16 patches. Each of those patches is considered to be a “word”/”token” and
projected to a feature space. With adding positional encodings and a token for classification on top, we can apply a
Transformer as usual to this sequence and start training it for our task. A nice GIF visualization of the architecture is
shown below (figure credit - Phil Wang):

52 Chapter 3. Report submission

https://openreview.net/pdf?id=YicbFdNTTy
https://github.com/lucidrains/vit-pytorch/blob/main/images/vit.gif

ASCI CBL Practicals, Release v1.0

We will walk step by step through the Vision Transformer, and implement all parts by ourselves. First, let’s implement
the image preprocessing: an image of size 𝑁×𝑁 has to be split into (𝑁/𝑀)2 patches of size 𝑀×𝑀 . These represent
the input words to the Transformer. Implement this logic in the function below:

[]: def img_to_patch(x, patch_size, flatten_channels=True):
"""
Inputs:

x - torch.Tensor representing the image of shape [B, C, H, W]
patch_size - Number of pixels per dimension of the patches (integer)
flatten_channels - If True, the patches will be returned in a flattened format

as a feature vector instead of a image grid.
Outputs:

Tensor of shape [B, H*W/patch_size^2, C, patch_size, patch_size] if flatten_
→˓channels=False,

and [B, H*W/patch_size^2, C*patch_size^2] otherwise.
"""
TODO: Implement the splitting of images into patches
raise NotImplementedError

[]: imgs = torch.randn(4, 3, 48, 48)
patch_size = 16
out = img_to_patch(imgs, patch_size, flatten_channels=False)
assert len(out.shape) == 5
assert out.shape[0] == imgs.shape[0]
assert out.shape[1] == imgs.shape[2]*imgs.shape[3]/patch_size**2
assert out.shape[2] == imgs.shape[1]
assert out.shape[3] == patch_size
assert out.shape[4] == patch_size

out = img_to_patch(imgs, patch_size, flatten_channels=True)
assert len(out.shape) == 3
assert out.shape[0] == imgs.shape[0]
assert out.shape[1] == imgs.shape[2]*imgs.shape[3]/patch_size**2
assert out.shape[2] == imgs.shape[1]*patch_size**2

Let’s take a look at how that works for our CIFAR examples above. For our images of size 32 × 32, we choose a patch
size of 4. Hence, we obtain sequences of 64 patches of size 4 × 4. We visualize them below:

[]: img_patches = img_to_patch(CIFAR_images, patch_size=4, flatten_channels=False)

fig, ax = plt.subplots(CIFAR_images.shape[0], 1, figsize=(14,3))
fig.suptitle("Images as input sequences of patches")
for i in range(CIFAR_images.shape[0]):

img_grid = torchvision.utils.make_grid(img_patches[i], nrow=64, normalize=True, pad_
→˓value=0.9)

img_grid = img_grid.permute(1, 2, 0)
ax[i].imshow(img_grid)
ax[i].axis('off')

plt.show()
plt.close()

Compared to the original images, it is much harder to recognize the objects from those patch lists now. Still, this is the
input we provide to the Transformer for classifying the images. The model has to learn itself how it has to combine
the patches to recognize the objects. The inductive bias in CNNs that an image is a grid of pixels, is lost in this input

3.4. Practical 3: Vision Transformers 53

ASCI CBL Practicals, Release v1.0

format.

After we have looked at the preprocessing, we can now start building the Transformer model. You can make use of the
PyTorch module nn.MultiheadAttention (docs) here. Further, we use the Pre-Layer Normalization version of the
Transformer blocks proposed by Ruibin Xiong et al. in 2020. The idea is to apply Layer Normalization not in between
residual blocks, but instead as a first layer in the residual blocks. This reorganization of the layers supports better
gradient flow and removes the necessity of a warm-up stage. A visualization of the difference between the standard
Post-LN and the Pre-LN version is shown below.

First, implement a Pre-LN attention block below:

[]: class AttentionBlock(nn.Module):

def __init__(self, embed_dim, hidden_dim, num_heads, dropout=0.0):
"""
Inputs:

embed_dim - Dimensionality of input and attention feature vectors
hidden_dim - Dimensionality of hidden layer in feed-forward network

(usually 2-4x larger than embed_dim)
num_heads - Number of heads to use in the Multi-Head Attention block
dropout - Amount of dropout to apply in the feed-forward network

"""
super().__init__()
TODO: Implement an pre-LN attention block
raise NotImplementedError

def forward(self, x):
"""
Inputs:

x - Input tensor of shape [Num Patches, Batch size, embed_dim]
"""
TODO: Implement the forward pass
raise NotImplementedError

[]: # Testing the attention block
num_heads = np.random.randint(low=4, high=16)
embed_dim = num_heads * np.random.randint(low=16, high=32)
hidden_dim = np.random.randint(low=128, high=512)
block = AttentionBlock(embed_dim, hidden_dim, num_heads)
block.to(device)
inp = torch.randn(10, 32, embed_dim, device=device)
out = block(inp)
for i in range(len(inp.shape)):

assert out.shape[i] == inp.shape[i]

Checking whether batch and patch dimension are correct
inp2 = inp.clone()
inp2[:,0] = 0.0
out2 = block(inp2)
diff = (out - out2).abs()
assert (diff[:,0] > 1e-4).any(), 'Output tensor shows no difference although input has␣
→˓changed'
assert (diff[:,1:] < 1e-4).all(), 'Other tensors besides the changed batch element have␣
→˓altered outputs. Check the dimensions' (continues on next page)

54 Chapter 3. Report submission

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html?highlight=multihead#torch.nn.MultiheadAttention
http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Now we have all modules ready to build our own Vision Transformer. Besides the Transformer encoder, we need the
following modules:

• A linear projection layer that maps the input patches to a feature vector of larger size. It is implemented by a
simple linear layer that takes each 𝑀 ×𝑀 patch independently as input.

• A classification token that is added to the input sequence. We will use the output feature vector of the classifi-
cation token (CLS token in short) for determining the classification prediction.

• Learnable positional encodings that are added to the tokens before being processed by the Transformer. Those
are needed to learn position-dependent information, and convert the set to a sequence. Since we usually work
with a fixed resolution, we can learn the positional encodings instead of having the pattern of sine and cosine
functions.

• An MLP head that takes the output feature vector of the CLS token, and maps it to a classification prediction.
This is usually implemented by a small feed-forward network or even a single linear layer.

With those components in mind, let’s implement the full Vision Transformer below:

[]: class VisionTransformer(nn.Module):

def __init__(self, embed_dim, hidden_dim, num_channels, num_heads, num_layers, num_
→˓classes, patch_size, num_patches, dropout=0.0):

"""
Inputs:

embed_dim - Dimensionality of the input feature vectors to the Transformer
hidden_dim - Dimensionality of the hidden layer in the feed-forward networks

within the Transformer
num_channels - Number of channels of the input (3 for RGB)
num_heads - Number of heads to use in the Multi-Head Attention block
num_layers - Number of layers to use in the Transformer
num_classes - Number of classes to predict
patch_size - Number of pixels that the patches have per dimension
num_patches - Maximum number of patches an image can have
dropout - Amount of dropout to apply in the feed-forward network and

on the input encoding
"""
super().__init__()
TODO: Implement all elements of the full Vision Transform
raise NotImplementedError

def forward(self, x):
TODO: Implement the forward pass
raise NotImplementedError

[]: # Testing the Vision Transformer module
num_heads = np.random.randint(low=4, high=16)
embed_dim = num_heads * np.random.randint(low=16, high=32)
hidden_dim = np.random.randint(low=128, high=512)
num_channels = 3
num_layers = np.random.randint(low=2, high=4)
num_classes = np.random.randint(low=5, high=20)
patch_size = [2,4,8][np.random.randint(low=0, high=3)]

(continues on next page)

3.4. Practical 3: Vision Transformers 55

ASCI CBL Practicals, Release v1.0

(continued from previous page)

num_patches = int((32/patch_size)**2)

vit_module = VisionTransformer(embed_dim, hidden_dim, num_channels, num_heads, num_
→˓layers, num_classes, patch_size, num_patches)
vit_module.to(device)
imgs = torch.randn(4, 3, 32, 32, device=device)
out = vit_module(imgs)
assert out.shape[0] == imgs.shape[0]
assert out.shape[1] == num_classes

Checking whether batch and patch dimension are correct
imgs2 = imgs.clone()
imgs2[0] = 0.0
out2 = vit_module(imgs2)
diff = (out2 - out).abs()
assert (diff[0] > 1e-4).any(), 'Output tensor shows no difference although input has␣
→˓changed'
assert (diff[1:] < 1e-4).all(), 'Other tensors besides the changed batch element have␣
→˓altered outputs. Check the dimensions'

Finally, we can put everything into a PyTorch Lightning Module as usual. We use torch.optim.AdamW as the opti-
mizer, which is Adam with a corrected weight decay implementation. Since we use the Pre-LN Transformer version,
we do not need to use a learning rate warmup stage anymore.

[]: class ViT(pl.LightningModule):

def __init__(self, model_kwargs, lr):
super().__init__()
self.save_hyperparameters()
self.model = VisionTransformer(**model_kwargs)
self.example_input_array = next(iter(train_loader))[0]

def forward(self, x):
return self.model(x)

def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr=self.hparams.lr, weight_decay=1e-3)
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[75, 90],␣

→˓gamma=0.1)
return [optimizer], [lr_scheduler]

def _calculate_loss(self, batch, mode="train"):
TODO: Implement step to calculate the loss and accuracy for a batch
raise NotImplementedError

def training_step(self, batch, batch_idx):
loss = self._calculate_loss(batch, mode="train")
return loss

def validation_step(self, batch, batch_idx):
self._calculate_loss(batch, mode="val")

(continues on next page)

56 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def test_step(self, batch, batch_idx):
self._calculate_loss(batch, mode="test")

3.4.2 Experiments

Commonly, Vision Transformers are applied to large-scale image classification benchmarks such as ImageNet to lever-
age their full potential. However, here we take a step back and ask: can Vision Transformer also succeed on classical,
small benchmarks such as CIFAR10? To find this out, we train a Vision Transformer from scratch on the CIFAR10
dataset. Let’s first create a training function for our PyTorch Lightning module which also loads the pre-trained model
if you have downloaded it above.

[]: def train_model(max_epochs=100, **kwargs):
trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH, "ViT"),

gpus=1 if str(device)=="cuda:0" else 0,
max_epochs=max_epochs,
callbacks=[ModelCheckpoint(save_weights_only=True, mode="max",␣

→˓monitor="val_acc"),
LearningRateMonitor("epoch")],

check_val_every_n_epoch=10)
trainer.logger._log_graph = True # If True, we plot the computation graph in␣

→˓tensorboard
trainer.logger._default_hp_metric = None # Optional logging argument that we don't␣

→˓need

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "ViT.ckpt")
if os.path.isfile(pretrained_filename):

print(f"Found pretrained model at {pretrained_filename}, loading...")
model = ViT.load_from_checkpoint(pretrained_filename) # Automatically loads the␣

→˓model with the saved hyperparameters
else:

pl.seed_everything(42) # To be reproducable
model = ViT(**kwargs)
trainer.fit(model, train_loader, val_loader)
model = ViT.load_from_checkpoint(trainer.checkpoint_callback.best_model_path) #␣

→˓Load best checkpoint after training

Test best model on validation and test set
val_result = trainer.test(model, val_loader, verbose=False)
test_result = trainer.test(model, test_loader, verbose=False)
result = {"test": test_result[0]["test_acc"], "val": val_result[0]["test_acc"]}

return model, result

Now, we can already start training our model. As seen in our implementation, we have a couple of hyperparameters that
we have to set. When creating this notebook, we have performed a small grid search over hyperparameters and listed
the best hyperparameters in the cell below. Nevertheless, it is worth discussing the influence that each hyperparameter
has, and what intuition we have for choosing its value.

First, let’s consider the patch size. The smaller we make the patches, the longer the input sequences to the Transformer
become. While in general, this allows the Transformer to model more complex functions, it requires a longer computa-
tion time due to its quadratic memory usage in the attention layer. Furthermore, small patches can make the task more

3.4. Practical 3: Vision Transformers 57

ASCI CBL Practicals, Release v1.0

difficult since the Transformer has to learn which patches are close-by, and which are far away. We experimented with
patch sizes of 2, 4, and 8 which gives us the input sequence lengths of 256, 64, and 16 respectively. We found 4 to
result in the best performance and hence pick it below.

Next, the embedding and hidden dimensionality have a similar impact on a Transformer as to an MLP. The larger the
sizes, the more complex the model becomes, and the longer it takes to train. In Transformers, however, we have one
more aspect to consider: the query-key sizes in the Multi-Head Attention layers. Each key has the feature dimension-
ality of embed_dim/num_heads. Considering that we have an input sequence length of 64, a minimum reasonable
size for the key vectors is 16 or 32. Lower dimensionalities can restrain the possible attention maps too much. To
reduce the computational complexity, we recommend using 4 heads, 128 embedding dimensionality and 256 hidden
dimensionality for a start.

Finally, the learning rate for Transformers is usually relatively small, and in papers, a common value to use is 3e-5.
However, since we work with a smaller dataset and have a potentially easier task, we found that we are able to increase
the learning rate to 3e-4 without any problems.

Feel free to explore the hyperparameters yourself by changing the values below. For a final run for the report, increase
the epochs to 100.

[]: model, results = train_model(model_kwargs={
'embed_dim': 128,
'hidden_dim': 256,
'num_heads': 8,
'num_layers': 6,
'patch_size': 8,
'num_channels': 3,
'num_patches': 16,
'num_classes': 10,
'dropout': 0.0

},
lr=3e-4,
max_epochs=10)

print("ViT results", results)

[]: # Opens tensorboard in notebook. Adjust the path to your CHECKPOINT_PATH!
%tensorboard --logdir ../saved_models/practical3/ViT

What accuracy does the ViT achieve? How does this compare to the CNN you have implemented in the second assign-
ment? Add the plots of the validation accuracy and a discussion of the previous questions in your report.

3.4.3 Bonus 1: Importance of Positional Embeddings

This part of the practical is not mandatory, but we recommend going through it if you have time. Here, we are interested
in what elements of a Transformer are crucial. One considerable difference to CNNs is that Transformers look at the
images as patches instead of a full grid, which removes some inductive biases about the positional information. To
still have access to positional information, we use position embeddings. However, how important are those to the
Transformer actually? Do we see a noticable accuracy drop if we don’t use the position embeddings? Or is it looking
at the images as a big bag of words anyways? Finally, how does this relation change when using different patch sizes?
These questions you should try to find an answer in this part of the practical. Specifically, train a Transformer without
positional embeddings, and compare it to your original Transformer. Repeat the experiment for a smaller patch size (4
or even 2) and compare how the accuracies have changed.

58 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

3.4.4 Conclusion

In this tutorial, we have implemented our own Vision Transformer from scratch and applied it to the task of image
classification. Vision Transformers work by splitting an image into a sequence of smaller patches, use those as input to
a standard Transformer encoder. While Vision Transformers achieved outstanding results on large-scale image recog-
nition benchmarks such as ImageNet, they considerably underperform when being trained from scratch on small-scale
datasets like CIFAR10. The reason is that in contrast to CNNs, Transformers do not have the inductive biases of transla-
tion invariance and the feature hierarchy (i.e. larger patterns consist of many smaller patterns). However, these aspects
can be learned when enough data is provided, or the model has been pre-trained on other large-scale tasks. Considering
that Vision Transformers have just been proposed end of 2020, there is likely a lot more to come on Transformers for
Computer Vision.

References

Dosovitskiy, Alexey, et al. “An image is worth 16x16 words: Transformers for image recognition at scale.” International
Conference on Representation Learning (2021). link

Chen, Xiangning, et al. “When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmen-
tations.” arXiv preprint arXiv:2106.01548 (2021). link

Tolstikhin, Ilya, et al. “MLP-mixer: An all-MLP Architecture for Vision.” arXiv preprint arXiv:2105.01601 (2021).
link

Xiong, Ruibin, et al. “On layer normalization in the transformer architecture.” International Conference on Machine
Learning. PMLR, 2020. link

3.5 Practical 4: Regular Group Convolutions

Open notebook:
Authors: David Knigge

3.5.1 Introduction

In this notebook, we will be implementing regular group convolutional networks from scratch, only making use of
pytorch primitives. The goal is to get familiar with the practical considerations to take into account when actually
implementing these convolutional networks.

You will be asked to fill in some gaps yourself. The pieces of code you are expected to fill in are surrounded by
demarcations, like so:

a = 1
b = 2

We calculate c = a + b

YOUR CODE STARTS HERE
c = ...
AND ENDS HERE

And you’d be expected to fill in something along the lines of c = a + b for c = We’ve included some assertions
to test for correctness of resulting tensor shapes.

3.5. Practical 4: Regular Group Convolutions 59

https://arxiv.org/pdf/2010.11929.pdf
https://arxiv.org/abs/2106.01548
https://arxiv.org/abs/2105.01601
http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
https://github.com/phlippe/asci_cbl_practicals/blob/main/notebooks/4_Regular_Group_Convolutions.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/main/notebooks/4_Regular_Group_Convolutions.ipynb

ASCI CBL Practicals, Release v1.0

We’ve also scattered some questions throughout the notebook to test your understanding of the implementation and
concepts used. Please include your answers to these questions (and any other observations you deem relevant!) in your
report.

If you’d like a refresher of the lecture, here we give a brief overview of the operations we are going to work with /
implement. These will be treated more extensively below. For simplicity of notation, here we assume each CNN layer
consists of only a single channel. Questions and feedback may be forwarded to David Knigge; d.m.knigge@uva.nl.

Brief recap on CNNs

Conventional CNNs make use of the convolution operator, here defined over R2 for a signal 𝑓 : R2 → R and a kernel
𝑘 : R2 → R at x ∈ R2:

(𝑓 * 𝑘)(x) =

∫︁
R2

𝑓(x̃)𝑘(x̃− x)dx̃,

As we can see, the convolution operation comes down to an inner product of the function 𝑓 and a shifted kernel 𝑘.

Sidenote: In reality CNNs implement a discretised version of this operation;

(𝑓 * 𝑘)(x) =
∑︁
x̃∈Z2

𝑓(x̃)𝑘(x− x̃)∆x̃

=
∑︁
x̃∈Z2

𝑓(x̃)𝑘(x− x̃)

Where above, since pixels in an image are generally evenly spaced, we set ∆x̃ = 1. For this recap we
stay in the continuous domain for simplicity.

In convolution layers, like PyTorch’s Conv2D implementation, the above operation is carried out for every x ∈ Z2

(limited of course to the domain over which the image is defined). Because the same set of weights is used throughout
the input, the output of this operation is equivariant to transformations from the translation group R2. Furthermore 𝑓, 𝑘
usually consist of a number of channels, which are all summed over.

In this tutorial, we will use PyTorch’s torch.nn.functional.conv2d() function to perform this integration opera-
tion at every position in input feature map. This saves us having to implement the convolution operation ourselves.

Brief recap on GCNNs

In regular group convolutions, the goal is to have a CNN of which are not only equivariant to translations R2, but
which are also equivariant to another (usually broader) group of interest 𝐺. We focus specifically on groups which
are combinations of translations R2 and some group of interest 𝐻 . In this tutorial we keep to the group of 90 degree
rotations in 2D; the Cyclic group of order 4 𝐻 = 𝐶4.

We will operate on 2D images, generally defined on R2, as such, the first step in constructing a network which can track
under which pose (read: transformation from a group 𝐺 = R2 o𝐻) a feature in the input occurs, we need to transfer
our signal to a domain in which the same feature under a different pose is disentangled. This happens through the lifting
convolution, which maps features in our input signal 𝑓𝑖𝑛 : R2 → R to a feature map on the group 𝑓𝑜𝑢𝑡 : 𝐺 → R. For
a signal and kernel 𝑓, 𝑘 both defined on R2, and a group element 𝑔 = (𝑥, ℎ) ∈ 𝐺 = R2 o𝐻:

(𝑓 *lifting 𝑘)(𝑔) =

∫︁
R2

𝑓(x̃)𝑘ℎ(x̃− x) dx̃.

Where 𝑘ℎ is the kernel 𝑘 : R2 → R transformed under the regular representation ℒℎ of a group element ℎ ∈ 𝐻;
𝑘ℎ = 1

|ℎ|ℒℎ[𝑘].

60 Chapter 3. Report submission

mailto:d.m.knigge@uva.nl
https://en.wikipedia.org/wiki/Convolution#Translational_equivariance
https://en.wikipedia.org/wiki/Cyclic_group

ASCI CBL Practicals, Release v1.0

Sidenote: The factor 1
|ℎ| , with |ℎ| the determinant of the matrix representation of ℎ in R2, accounts for a

possible change in volume on R2 that ℎ might have. Working with the cyclic group, we don’t encounter
this problem (the determinant of a rotation matrix is 1, volumes are invariant to rotations on R2), but if
you’d like to implement equivariance to for example the dilation group, this becomes important.

Next, now that we have a feature map defined on the group; 𝑓𝑜𝑢𝑡 : 𝐺 → R, we apply group convolutions, extending
the convolution operation to an integral over the entire group 𝐺;

(𝑓 *group 𝑘)(𝑔) =

∫︁
𝐺

𝑓(𝑔)𝑘(𝑔−1 · 𝑔)d𝑔

=

∫︁
R2

∫︁
𝐻

𝑓(x̃, ℎ̃)ℒ𝑥ℒℎ𝑘(x̃, ℎ̃)
1

|ℎ|
dx̃ dℎ̃

=

∫︁
R2

∫︁
𝐻

𝑓(x̃, ℎ̃)𝑘(ℎ−1(x̃− x), ℎ−1 · ℎ̃)
1

|ℎ|
dx̃ dℎ̃.

The main difference with the lifting convolution is that the signal and kernel 𝑓, 𝑘 are both functions on 𝐺;𝐺 → R, and
the integral reflects this by extending over the entire group 𝐺. Other than that, there is little difference!

After a number of such group convolutional layers, we will want to ultimately obtain a representation that is invariant
to the group action. We can do this by performing a projection which collapses our function defined over 𝐺 to a single
point, with an operation that is invariant to the group action (summing, averaging, max, min).

After this short refresher, let’s get to coding!

Installing and importing some useful packages

Here we install and import some libraries that we will use throughout this tutorial. We use the pytorch as our
deep learning framework of choice. Note that for ease of model training and tracking, we additionally make use of
pytorch-lightning.

[1]: ## Standard libraries
import os
import numpy as np
import math
from PIL import Image
from types import SimpleNamespace
from functools import partial

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.colors import to_rgb
import matplotlib
matplotlib.rcParams['lines.linewidth'] = 2.0

PyTorch
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
Torchvision
import torchvision
from torchvision.datasets import MNIST
from torchvision import transforms

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 61

ASCI CBL Practicals, Release v1.0

(continued from previous page)

PyTorch Lightning
try:

import pytorch_lightning as pl
except ModuleNotFoundError: # Google Colab does not have PyTorch Lightning installed by␣
→˓default. Hence, we do it here if necessary

!pip3 install pytorch-lightning>=1.6 --quiet
import pytorch_lightning as pl

import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint

[2]: # Path to the folder where the datasets are be downloaded (e.g. MNIST)
DATASET_PATH = "../data"
os.makedirs(DATASET_PATH, exist_ok=True)
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "../saved_models/practical4"
os.makedirs(CHECKPOINT_PATH, exist_ok=True)

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

As an example image, we will use the popular image of paprikas. If you are working on GoogleColab, you need to
download this image, which we will do below:

[3]: import urllib.request
from urllib.error import HTTPError
Github URL where the image is stored
base_url = "https://raw.githubusercontent.com/phlippe/asci_cbl_practicals/main/assets/"
Files to download
files = ["paprika.tiff"]

For each file, check whether it already exists. If not, try downloading it.
for file_name in files:

file_path = os.path.join(DATASET_PATH, file_name)
if not os.path.isfile(file_path):

file_url = base_url + file_name
print(f"Downloading {file_url}...")
try:

urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:

print("Something went wrong. Please try to download the file manually from␣
→˓the Github, or ask one of your TAs with the following error message:\n", e)

62 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

3.5.2 Part 1: Group theory

1.1 What is a group?

To start off, we recap some of the group theoretical preliminaries. Recall that a group is defined by a tuple (𝐺, ·), where
𝐺 is a set of group elements and · the binary group action which tells us how elements 𝑔 ∈ 𝐺 combine. The group
action · needs to satisfy:

1. Closure. 𝐺 is closed under ·; for all 𝑔1, 𝑔2 ∈ 𝐺 we have 𝑔1 · 𝑔2 ∈ 𝐺.

2. Identity. There exists an identity element 𝑒 s.t. for each 𝑔 ∈ 𝐺, we have 𝑒 · 𝑔 = 𝑔 · 𝑒 = 𝑔.

3. Inverse. For every element 𝑔 ∈ 𝐺 we have an element 𝑔−1 ∈ 𝐺, s.t. 𝑔 · 𝑔−1 = 𝑒.

4. Associativity. For every set of elements 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, we have (𝑔1 · 𝑔2) · 𝑔3 = 𝑔1 · (𝑔2 · 𝑔3).

The group can have an action on functions defined on R2, which we can instantiate through the regular representation
ℒG→R2

𝑔 . For simplicity, we write ℒ𝑔 . It is given by:

ℒ𝑔𝑓(x) = 𝑓(𝑔−1 · x)

Where we write the action of 𝑔−1 on 𝑥 as 𝑔−1 · x. This is where the regular group convolution gets its name; because
of its use of the regular representation to transform the kernels 𝑘 used throughout the network.

1.2 Implementing a group in python

Let’s start out with a baseclass in which we outline which functions we are going to need when working with groups
in our setting. As we’re going to use torch in our implementation of group convolutional neural networks, let us
implement the group as a torch module as well.

We first specify a base class GroupBase in which we specify all necessary properties and operations that we need in
our treatment of group convolutional neural networks. The idea is that in our implementation of group convolutions,
implementing these functions is necessary and sufficient for extending group convolutional neural networks to other
groups. In other words; if you’d like to implement group convolutions equivariant to a new group you find interesting,
just inherit this baseclass, implement its methods, and you’re good to go. (In practice this only faithfully works for
discrete, compact groups).

[]: class GroupBase(torch.nn.Module):

def __init__(self, dimension, identity):
""" Implements a group.

@param dimension: Dimensionality of the group (number of dimensions in the basis␣
→˓of the algebra).

@param identity: Identity element of the group.
"""
super().__init__()
self.dimension = dimension
self.register_buffer('identity', torch.Tensor(identity))

def elements(self):
""" Obtain a tensor containing all group elements in this group.

"""
raise NotImplementedError()

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 63

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def product(self, h, h_prime):
""" Defines group product on two group elements.

@param g1: Group element 1
@param g2: Group element 2
"""
raise NotImplementedError()

def inverse(self, h):
""" Defines inverse for group element.

@param g: A group element.
"""
raise NotImplementedError()

def left_action_on_R2(self, h_batch, x_batch):
""" Group action of an element from the subgroup H on a vector in R2. For␣

→˓efficiency we
implement this batchwise.

@param h_batch: Group elements from H.
@param x_batch: Vectors in R2.
"""
raise NotImplementedError()

def left_action_on_H(self, h_batch, h_prime_batch):
""" Group action of elements of H on other elements in H itself. Comes down to␣

→˓group product.
For efficiency we implement this batchwise. Each element in h_batch is applied␣

→˓to each element
in h_prime_batch.

@param h_batch: Group elements from H.
@param h_prime_batch: Other group elements in H.
"""
raise NotImplementedError()

def matrix_representation(self, h):
""" Obtain a matrix representation in R^2 for an element h.

@param h: Group element
"""
raise NotImplementedError()

def determinant(self, h):
""" Calculate the determinant of the representation of a group element
h.

@param g:
"""
raise NotImplementedError()

(continues on next page)

64 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def normalize_group_elements(self, h):
""" Map the group elements to an interval [-1, 1]. We use this to create
a standardized input for obtaining weights over the group.

@param g:
"""
raise NotImplementedError()

1.3 Implementing the cyclic group C4

As an example, let’s discuss a relatively simple group; the group of all 90 rotations of the plane, otherwise known as
the cyclic group C4. Note:

• The set of group elements of 𝐶4 is given by 𝐺 := {𝑒, 𝑔, 𝑔2, 𝑔3}. We can parameterise these group elements
using rotation angles 𝜃, i.e. 𝑒 = 0, 𝑔 = 1

2𝜋, 𝑔
2 = 𝜋, . . .

• The group product is then given by 𝑔 · 𝑔′ := 𝜃 + 𝜃′ mod 2𝜋.

• The inverse is given by: 𝑔−1 = −𝜃 mod 2𝜋.

• The group 𝐶4 has an action on the euclidean plane in 2 dimensions R2 given by a rotation matrix;

𝑅𝜃 :

[︂
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]︂
.

This gives us the regular representation ℒ𝜃 on functions 𝑓 defined over R2:

ℒ𝜃𝑓(x) = 𝑓(𝑅−𝜃 mod 2𝜋x).

Let’s implement this group!

[]: class CyclicGroup(GroupBase):

def __init__(self, order):
super().__init__(

dimension=1,
identity=[0.]

)

assert order > 1
self.order = torch.tensor(order)

def elements(self):
""" Obtain a tensor containing all group elements in this group.

"""
return torch.linspace(

start=0,
end=2 * np.pi * float(self.order - 1) / float(self.order),
steps=self.order,
device=self.identity.device

)

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 65

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def product(self, h1, h2):
""" Defines group product on two group elements of the cyclic group C4.

@param h1: Group element 1
@param h2: Group element 2
"""

As we directly parameterize the group by its rotation angles, this
will be a simple addition. Don't forget the closure property though!

YOUR CODE STARTS HERE
product = ...
AND ENDS HERE

return product

def inverse(self, h):
""" Defines group inverse for an element of the cyclic group C4.

@param h: Group element
"""

Implement the inverse operation. Keep the closure property in mind!

YOUR CODE STARTS HERE
inverse = ...
AND ENDS HERE

return inverse

def left_action_on_R2(self, batch_h, batch_x):
""" Group action of an element g on a set of vectors in R2.

@param batch_h: Tensor of group elements. [num_elements]
@param batch_x: Tensor of vectors in R2. [2, spatial_x, spatial_y]
"""
Create a tensor containing representations of each of the group
elements in the input. Creates a tensor of size [batch_size, 2, 2].

YOUR CODE STARTS HERE
batched_rep = ...
AND ENDS HERE

Transform the r2 input grid with each representation to end up with
a transformed grid of dimensionality [num_group_elements, spatial_x,
spatial_y, 2]. Note the order of the dimensions!

Recall that we are working with a left-regular representation,
meaning we transform vectors in R^2 through left-matrix multiplication.

YOUR CODE STARTS HERE
out = torch.einsum(...)

(continues on next page)

66 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

AND ENDS HERE

Afterwards (because grid_sample assummes our grid is y,x instead of x,y)
we swap x and y coordinate values with a roll along final dimension.
return out.roll(shifts=1, dims=-1)

def left_action_on_H(self, batch_h, batch_h_prime):
""" Group action of an element h on a set of group elements in H.
Nothing more than a batchwise group product.

@param batch_h: Tensor of group elements.
@param batch_h_prime: Tensor of group elements to apply group product to.
"""
The elements in batch_h work on the elements in batch_h_prime directly,
through the group product. Each element in batch_h is applied to each element
in batch_h_prime.
transformed_batch_h = self.product(batch_h.repeat(batch_h_prime.shape[0], 1),

batch_h_prime.unsqueeze(-1))
return transformed_batch_h

def matrix_representation(self, h):
""" Obtain a matrix representation in R^2 for an element h.

@param h: A group element.
"""
YOUR CODE STARTS HERE
representation = ...
AND ENDS HERE

return representation.to(self.identity.device)

def normalize_group_elements(self, h):
""" Normalize values of group elements to range between -1 and 1.
The group elements range from 0 to 2pi * (self.order - 1) / self.order,
so we normalize by

@param h: A group element.
"""
largest_elem = 2 * np.pi * (self.order - 1) / self.order

return (2*h / largest_elem) - 1.

[]: # Some tests to verify our implementation.
c4 = CyclicGroup(order=4)
e, g1, g2, g3 = c4.elements()

assert c4.product(e, g1) == g1 and c4.product(g1, g2) == g3
assert c4.product(g1, c4.inverse(g1)) == e

assert torch.allclose(c4.matrix_representation(e), torch.eye(2))
assert torch.allclose(c4.matrix_representation(g2), torch.tensor([[-1, 0], [0, -1]]).
→˓float(), atol=1e-6)

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 67

ASCI CBL Practicals, Release v1.0

(continued from previous page)

assert torch.allclose(c4.left_action_on_R2([g1], torch.tensor([[[0.]], [[1.]]])), torch.
→˓tensor([[[0., -1.]]]), atol=1e-7)

1.4 Visualizing the group action

Let’s play around with the group implementation we have just created! To obtain pixel values for the transformed
image, we use pytorch’s grid_sample function (see documentation).

[]: img = Image.open(os.path.join(DATASET_PATH, "paprika.tiff"))

img_tensor = transforms.ToTensor()(img)

img

[]: # This creates a grid of the pixel locations in our image
img_grid_R2 = torch.stack(torch.meshgrid(

torch.linspace(-1, 1, img_tensor.shape[-1]),
torch.linspace(-1, 1, img_tensor.shape[-2]),

))

[2, 512, 512] since our image is 2 dimensional and has a width and height of
512 pixels
img_grid_R2.shape

[]: # let's create the group of 90 degree clockwise rotations
c4 = CyclicGroup(order=4)
e, g1, g2, _ = c4.elements()

[]: # Create a counterclockwise rotation of 270 degrees using only e, g1 and g2.

YOUR CODE STARTS HERE
g3 = ...
AND ENDS HERE

assert g3 == c4.elements()[-1]

Transform the image grid we just created with the matrix representation of
this group element. Note that we implemented this batchwise, so we add a dim.
transformed_grid = c4.left_action_on_R2(c4.inverse(g3).unsqueeze(0), img_grid_R2)

As we’ll be using it extensively throughout this tutorial, let’s take a closer look at the grid_sample. From the pytorch
docs:

Currently, only spatial (4-D) and volumetric (5-D) input are supported.

In the spatial (4-D) case, for input with shape (𝑁,𝐶,𝐻𝑖𝑛,𝑊𝑖𝑛) and grid with shape (𝑁,𝐻out,𝑊out, 2),
the output will have shape (𝑁,𝐶,𝐻out,𝑊out).

Parameters:

input (Tensor) – input of shape (𝑁,𝐶,𝐻in,𝑊in) (4-D case) or (𝑁,𝐶,𝐷in, 𝐻in,𝑊in) (5-D case).

68 Chapter 3. Report submission

https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html

ASCI CBL Practicals, Release v1.0

For now, we’re working in the 4-D setting. We’re going to transform a single image with a single transformation, so in
our case𝑁 = 1, the image has 3 channels so𝐶 = 3, and the height and width we just saw were both𝐻in = 𝑊in = 512.

grid (Tensor) – flow-field of shape (𝑁,𝐻out,𝑊out, 2) (4-D case) or (𝑁,𝐷out, 𝐻out,𝑊out, 3) (5-D case)

Remember, this shape is what we matched transformed_grid in C4.left_action_on_R2 to. Currently, we thus
expect the transformed grid to be of shape (1, 512, 512, 2).

[]: transformed_grid.shape

[]: # Let's set up the sampling method with some fixed parameters that we'll use throughout.
grid_sample = partial(

torch.nn.functional.grid_sample,
padding_mode='zeros',
align_corners=True,
mode="bilinear"

)

[]: # This function samples an input tensor based on a grid using interpolation.
It is implemented for batchwise operations so we add a dimension to our and input␣
→˓image.
transformed_img = grid_sample(img_tensor.unsqueeze(0), transformed_grid)

if we turn this back into a PIL image we can see the result of our transformation!
transforms.ToPILImage()(transformed_img[0])

3.5.3 Part 2: Group Equivariant Convolutional Networks

As discussed in the lecture, regular group convolutional neural networks consist of three main elements. The lifting
convolution, group convolution and projection operation. We treat these in order.

2.1 Lifting convolution

First is the lifting convolution, which disentangles features at any spatial location in the input 𝑓𝑖𝑛 under transformations
of 𝐻 . You may think of this as registering at all locations, for a given feature 𝑒, the occurrences of transformed versions
of this feature ℒℎ(𝑒), for ℎ ∈ 𝐻 . (Instead of ℒℎ(𝑒), we sometimes write ℎ · 𝑒 to denote the action of ℎ on 𝑒.) The
lifting convolution thus maps from R2 to 𝐺 = R2 o𝐻 . As a result, our lifted feature map 𝑓𝑜𝑢𝑡 has, besides the usual
spatial dimensions, one or more additional group dimensions (dependent on the dimensionality of 𝐻).

3.5. Practical 4: Regular Group Convolutions 69

ASCI CBL Practicals, Release v1.0

For example, take the group of 90 deg rotations as 𝐻 , and let’s say 𝑒 is a squiggle of sorts, of which we have three
occurences in our input feature map 𝑓𝑖𝑛. Two are under a 90 deg rotation; 𝜃90 · 𝑒, and one is under its canonical
orientation; 𝜃0 · 𝑒. A lifting convolution with a kernel 𝑘 which exactly matches the feature 𝑒 would land responses at
different offsets along the group dimension of the feature map; namely one at the spatial feature map corresponding to
the group elements 𝜃0 and two at the spatial feature map corresponding to 𝜃90. See the above figure for an intuition.

2.1.1 Overview

How do we get our convolution operation to pick up features under different transformations of 𝐻? Intuitively, it is
not that different from the convolution operation as we are familiar with in CNNs. There, we enable the extraction of
features at any location by sharing the same kernel over all spatial positions.

From our current group theoretic perspective, we interpret this as applying all possible translations 𝑥 ∈ R2 to our
kernel 𝑘 and recording the response we get when we take the inner product of the input 𝑓𝑖𝑛 with this transformed
kernel ℒx(𝑘). This operation starts with a feature map defined on R2 and also yields a feature map defined over R2.
See above.

Now that we additionally want to register features under different group actions ℒℎ for ℎ ∈ 𝐻 , we can do so by simply
also transforming 𝑘 with all of their group actions and recording the results. For example, in case of the rotation group
C4, we not only translate, but additionally rotate the kernel 𝑘 by all possible 90 deg rotations, and record the responses
for the resulting transformed kernels!

70 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

2.1.2 Implementing the lifting convolution kernel

Let’s get to programming. First, we need to define a kernel 𝑘 which we can transform under arbitrary group actions with
ℒℎ. When working with images, a convolution kernel is generally defined as a set of independently sampled weights
𝑊 defined over an equidistant discretisation of R2 (pixels are evenly spaced).

Recall that we can express the group action of a group 𝐻 on functions (such as kernels 𝑘) defined over R2 through the
regular representation ℒℎ. The regular representation transforms the function 𝑘 through a transformation of the domain
of the function 𝑘. In other words, the regular representation transforms the grid over which the kernel 𝑘 is defined, to
obtain the values for the transformed function ℒℎ(𝑘).

As such, to define a kernel 𝑘 which we can transform with the regular representation of a group 𝐻 , we need to construct
a grid over which the kernel values are defined. We can then transform this grid by the action of each group element
ℎ ∈ 𝐻 to obtain a set of grids corresponding to transformed kernels for each of the group elements of 𝐻 . Let’s get to
work!

Notes:

• In implementing the actual lifting and group convolution operations, we will make use of PyTorch’s Conv2D
class. This simplifies our life a lot, since Conv2D takes cares of translating the kernels 𝑘 over all input locations.
Hence we do not need to implement the action of the translation group ourselves (ℒx), but will still remain
translation equivariant! Making our operations compatible with Conv2D requires a small amount of trickery, but
we will get to that later.

[]: class LiftingKernelBase(torch.nn.Module):

def __init__(self, group, kernel_size, in_channels, out_channels):
""" Implements a base class for the lifting kernel. Stores the R^2 grid
over which the lifting kernel is defined and it's transformed copies
under the action of a group H.

"""
super().__init__()
self.group = group

self.kernel_size = kernel_size
self.in_channels = in_channels
self.out_channels = out_channels

Create spatial kernel grid. These are the coordinates on which our
kernel weights are defined.
self.register_buffer("grid_R2", torch.stack(torch.meshgrid(

torch.linspace(-1, 1, self.kernel_size),
torch.linspace(-1, 1, self.kernel_size),

)).to(self.group.identity.device))

Transform the grid by the elements in this group.
self.register_buffer("transformed_grid_R2", self.create_transformed_grid_R2())

def create_transformed_grid_R2(self):
"""Transform the created grid by the group action of each group element.
This yields a grid (over H) of spatial grids (over R2). In other words,
a list of grids, each index of which is the original spatial grid transformed by
a corresponding group element in H.

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 71

ASCI CBL Practicals, Release v1.0

(continued from previous page)

"""
Obtain all group elements.

YOUR CODE STARTS HERE
group_elements = ...
AND ENDS HERE

Transform the grid defined over R2 with the sampled group elements.
Recall how the left-regular representation acts on the domain of a
function on R2! (Hint: look closely at the equation given under 1.3)

YOUR CODE STARTS HERE
transformed_grid = ...
AND ENDS HERE

return transformed_grid

def sample(self, sampled_group_elements):
""" Sample convolution kernels for a given number of group elements

arguments should include:
:param sampled_group_elements: the group elements over which to sample

the convolution kernels

should return:
:return kernels: filter bank extending over all input channels,

containing kernels transformed for all output group elements.
"""
raise NotImplementedError()

[]: # Let's check whether our implementation works correctly. First we inspect the
shape of our transformed grids to assess whether this is correct.
lifting_kernel_base = LiftingKernelBase(

group=CyclicGroup(order=4),
kernel_size=2,
in_channels=1,
out_channels=1

)

assert lifting_kernel_base.transformed_grid_R2.shape == torch.Size([4, 2, 2, 2])

[]: # Let's visualize the transformed kernel grids!
lifting_kernel_base = LiftingKernelBase(

group=CyclicGroup(order=4),
kernel_size=7,
in_channels=1,
out_channels=1

)

(continues on next page)

72 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

transformed_grid_R2 = lifting_kernel_base.transformed_grid_R2

The grid has a shape of [num_group_elements, kernel_size, kernel_size, dim_fmap_
→˓domain(R^2)]
transformed_grid_R2.shape

[]: plt.rcParams['figure.figsize'] = [12, 3]

Create [group_elements] figures
fig, ax = plt.subplots(1, transformed_grid_R2.shape[0])

Fold both spatial dimensions into a single dimension
transformed_grid_R2 = transformed_grid_R2.reshape(transformed_grid_R2.shape[0],

transformed_grid_R2.
→˓shape[1]*transformed_grid_R2.shape[2],

2).numpy()

Visualize the transformed kernel grids. We mark the same cornerpoint by a blue 'x' in␣
→˓all grids as reference point.
for group_elem in range(transformed_grid_R2.shape[0]):

ax[group_elem].scatter(transformed_grid_R2[group_elem, 0, 0], transformed_grid_
→˓R2[group_elem, 0, 1], marker='x', c='b')

ax[group_elem].scatter(transformed_grid_R2[group_elem, 1:, 0], transformed_grid_
→˓R2[group_elem, 1:, 1], c='r')

fig.text(0.5, 0.04, 'Group elements', ha='center')
plt.show()

If your code is correctly implemented, you should see the counter-clockwise rotation action happening!

At this point we have a set of grids transformed under the operation of the group 𝐻 . We now need to decide how we are
going to sample kernel values at the grid points in each of these grids. This is where the first major hurdle in applying
GCNNs occurs.

Whereas conventional CNNs get away with sharing the same set of weights over all spatial positions (which is due to
the fact that we translate the kernel only with steps that match whole pixel-distances), for arbitrary groups 𝐻 we may
require kernel values for grid points that lie off the pixel grid of the kernel under its canonical transformation.

Of course, we could (and in fact will) use interpolation to obtain kernel values for grid locations between pixel locations,
but this may be limiting in expressivity and will introduce interpolation artefacts!

Notes:

• When we are implementing equivariance for the group of 90 deg rotations, 𝐻 = 𝐶4, we of course could get
away without using interpolation, since all transformed grids lie share the same locations. We could implement
the group action of this particular group through a permutation of the weights. But we’d like to be more general
than that in this tutorial, so we’ll go with interpolation instead! Luckily PyTorch has a function that allows us to
sample an input on a grid; we will use PyTorch’s grid_sample function for interpolation!

[]: class InterpolativeLiftingKernel(LiftingKernelBase):

def __init__(self, group, kernel_size, in_channels, out_channels):
super().__init__(group, kernel_size, in_channels, out_channels)

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 73

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Create and initialise a set of weights, we will interpolate these
to create our transformed spatial kernels.
self.weight = torch.nn.Parameter(torch.zeros((

self.out_channels,
self.in_channels,
self.kernel_size,
self.kernel_size

), device=self.group.identity.device))

Initialize weights using kaiming uniform intialisation.
torch.nn.init.kaiming_uniform_(self.weight.data, a=math.sqrt(5))

def sample(self):
""" Sample convolution kernels for a given number of group elements

should return:
:return kernels: filter bank extending over all input channels,

containing kernels transformed for all output group elements.
"""
First, we fold the output channel dim into the input channel dim;
this allows us to transform the entire filter bank in one go using the
torch grid_sample function.

Next, we want a transformed set of weights for each group element so
we repeat the set of spatial weights along the output group axis.

YOUR CODE STARTS HERE
weight = ...
AND ENDS HERE

Check whether the weight has the expected shape.
assert weight.shape == torch.Size((

self.group.elements().numel(),
self.out_channels * self.in_channels,
self.kernel_size,
self.kernel_size

))

Sample the transformed kernels.
transformed_weight = grid_sample(

weight,
self.transformed_grid_R2

)

Separate input and output channels.
transformed_weight = transformed_weight.view(

self.group.elements().numel(),
self.out_channels,
self.in_channels,
self.kernel_size,
self.kernel_size

)

(continues on next page)

74 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Put the output channel dimension before the output group dimension.
transformed_weight = transformed_weight.transpose(0, 1)

return transformed_weight

[]: ik = InterpolativeLiftingKernel(
group=CyclicGroup(order=4),
kernel_size=5,
in_channels=2,
out_channels=1

)

weights = ik.sample()

Let’s visualize the weights we sampled from our lifting convolution kernel!

[]: plt.rcParams['figure.figsize'] = [10, 5]

Pick an output channel to visualize
out_channel_idx = 0

Create [in_channels, group_elements] figures
fig, ax = plt.subplots(weights.shape[2], weights.shape[1])

for in_channel in range(weights.shape[2]):
for group_elem in range(weights.shape[1]):

ax[in_channel, group_elem].imshow(
weights[out_channel_idx, group_elem, in_channel, :, :].detach().numpy()

)

fig.text(0.5, 0.04, 'Group elements', ha='center')
fig.text(0.04, 0.5, 'Input channels', va='center', rotation='vertical')

plt.show()

As we can see, spatial kernel rotates under the action of the rotation group elements!

2.1.3 Implementing the lifting convolution

Finally, we can implement the lifting convolution operation! This class should take as input a feature map defined over
R2, and spit out a feature map over R2 o 𝐻 , where features under different transformations ℎ ∈ 𝐻 are disentangled
along the 𝐻 axis!

Notes:

• To prevent having to implement our own implementation of the convolution operation, and to leverage the highly
optimized pytorch Conv2D class, we use some neat tricks in our lifting (and group) convolution classes. Nor-
mally, a convolution layer applies a set of 𝑛 spatial kernels throughout the input, where 𝑛 is the number of
output channels of the convolution operation. Because we now also have num_group_elem transformed ver-
sions of these kernels, which we want to apply everywhere in the input, we can trick PyTorch by having it treat
every transformation of the same spatial kernel as a separate output channel. To do this, we simply reshape our
set of [out_channels, num_group_elem, in_channels, kernel_size, kernel_size] kernels into a

3.5. Practical 4: Regular Group Convolutions 75

ASCI CBL Practicals, Release v1.0

set of [out_channels x num_group_elem, in_channels, kernel_size, kernel_size] kernels. See
below!

• As mentioned, a great additional benefit of using the PyTorch Conv2D class is that we are not required to obtain
translated kernels ℒx(𝑘) ourselves, PyTorch takes care of that!

[]: class LiftingConvolution(torch.nn.Module):

def __init__(self, group, in_channels, out_channels, kernel_size):
super().__init__()

self.kernel = InterpolativeLiftingKernel(
group=group,
kernel_size=kernel_size,
in_channels=in_channels,
out_channels=out_channels

)

def forward(self, x):
""" Perform lifting convolution

@param x: Input sample [batch_dim, in_channels, spatial_dim_1,
spatial_dim_2]

@return: Function on a homogeneous space of the group
[batch_dim, out_channels, num_group_elements, spatial_dim_1,
spatial_dim_2]

"""

Obtain convolution kernels transformed under the group.

YOUR CODE STARTS HERE
conv_kernels = ...
AND ENDS HERE

Apply lifting convolution. Note that using a reshape we can fold the
group dimension of the kernel into the output channel dimension. We
treat every transformed kernel as an additional output channel. This
way we can use pytorch's conv2d function!

Question: Do you see why we (can) do this?

YOUR CODE STARTS HERE
x = torch.nn.functional.conv2d(

input=x,
weight=conv_kernels.reshape(

...
),

)
AND ENDS HERE

Reshape [batch_dim, in_channels * num_group_elements, spatial_dim_1,
spatial_dim_2] into [batch_dim, in_channels, num_group_elements,
spatial_dim_1, spatial_dim_2], separating channel and group
dimensions.

(continues on next page)

76 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

x = x.view(
-1,
self.kernel.out_channels,
self.kernel.group.elements().numel(),
x.shape[-1],
x.shape[-2]

)

return x

[]: lifting_conv = LiftingConvolution(
group=CyclicGroup(order=4),
kernel_size=5,
in_channels=3,
out_channels=8

)

2.2 Group convolution

Now that we have a way to obtain feature maps defined over the group 𝐺 from input functions defined over R2, let’s
move on to implementing a convolutional layer that fully operates on the group 𝐺 : R2 o 𝐻 . Note that the input
feature map at this stage, 𝑓𝑖𝑛, has, besides the usual spatial dimensions defined over R2, one or more additional group
dimensions defined over 𝐻 . As such, the group convolution operation, *𝑔𝑟𝑜𝑢𝑝, maps from a function on the group 𝑓𝑖𝑛
to another function on the group 𝑓𝑜𝑢𝑡.

2.2.1 Overview

Since the input to the group convolution layer now contains additional group dimensions; 𝑓𝑖𝑛 : R2o𝐻 → R, we need
to convolve it with a kernel 𝑘𝑔𝑟𝑜𝑢𝑝 that is also defined over the entire group; 𝑘𝑔𝑟𝑜𝑢𝑝 : R2 o𝐻 → R. This is in contrast
to the lifting convolution, where 𝑘𝑙𝑖𝑓𝑡𝑖𝑛𝑔 was only defined over the spatial domain R2. You could think of this kernel
𝑘𝑔𝑟𝑜𝑢𝑝 as a stack of spatial kernels, a separate one for each group element ℎ ∈ 𝐻 . Importantly, since 𝑘 is now also
defined on a grid over 𝐻 , the group 𝐻 now also has an action on this 𝐻-axis of 𝑘. For example, in our case of 𝐻 = 𝐶4,
elements 𝜃 ∈ 𝐶4 now not only have a rotating action on the spatial domain of the kernel, but also a translating action
along the group axis. Hence, applying a group element 𝜃 ∈ 𝐶4 leads to a twist-shift of the 𝑘 along the group axis. See
below! (Remember 𝐻 = 𝐶4 is periodic)

3.5. Practical 4: Regular Group Convolutions 77

ASCI CBL Practicals, Release v1.0

Apart from this difference, the group convolution operator works in much the same way as the liting operator. We
again transform the kernel 𝑘𝑔𝑟𝑜𝑢𝑝 with the actions of the group 𝐻 and R2 and obtain responses for the inner product
of this kernel with the input (although again, we let PyTorch do all the work for the translation group). See below for
an intuition.

2.2.2 Implementing the group convolution kernel

Again, let’s define a kernel 𝑘 which we can transform with the group action. Now, our kernel grid is not only defined
over R2, but additionally over 𝐻 .

Notes:

• Since the grid over 𝐻 is made up of elements ℎ′ ∈ 𝐻 , transforming the grid over 𝐻 with (another) group element
ℎ ∈ 𝐻 comes out to applying the group product of ℎ with each grid element ℎ′.

• Because we are working with semidirect product groups R2 o𝐻 , we can transform the R2 and 𝐻 dimensions
of our grids separately before combining them into a shared grid over R2 o𝐻!

[]: class GroupKernelBase(torch.nn.Module):

def __init__(self, group, kernel_size, in_channels, out_channels):
""" Implements base class for the group convolution kernel. Stores grid
defined over the group R^2 \rtimes H and it's transformed copies under
all elements of the group H.

(continues on next page)

78 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

"""
super().__init__()
self.group = group

self.kernel_size = kernel_size
self.in_channels = in_channels
self.out_channels = out_channels

Create a spatial kernel grid
self.register_buffer("grid_R2", torch.stack(torch.meshgrid(

torch.linspace(-1, 1, self.kernel_size),
torch.linspace(-1, 1, self.kernel_size),

)).to(self.group.identity.device))

The kernel grid now also extends over the group H, as our input
feature maps contain an additional group dimension
self.register_buffer("grid_H", self.group.elements())

self.register_buffer("transformed_grid_R2xH", self.create_transformed_grid_
→˓R2xH())

def create_transformed_grid_R2xH(self):
"""Transform the created grid over R^2 \rtimes H by the group action of
each group element in H.

This yields a set of grids over the group. In other words, a list of
grids, each index of which is the original grid over G transformed by
a corresponding group element in H.
"""
Sample the group H.

YOUR CODE STARTS HERE
group_elements = ...
AND ENDS HERE

Transform the grid defined over R2 with the sampled group elements.

YOUR CODE STARTS HERE
transformed_grid_R2 = ...
AND ENDS HERE

Transform the grid defined over H with the sampled group elements.

YOUR CODE STARTS HERE
transformed_grid_H = ...
AND ENDS HERE

Rescale values to between -1 and 1, we do this to please the torch
grid_sample function.
transformed_grid_H = self.group.normalize_group_elements(transformed_grid_H)

Create a combined grid as the product of the grids over R2 and H

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 79

ASCI CBL Practicals, Release v1.0

(continued from previous page)

repeat R2 along the group dimension, and repeat H along the spatial dimension
to create a [output_group_elem, num_group_elements, kernel_size, kernel_size,␣

→˓3] grid
transformed_grid = torch.cat(

(
transformed_grid_R2.view(

group_elements.numel(),
1,
self.kernel_size,
self.kernel_size,
2,

).repeat(1, group_elements.numel(), 1, 1, 1),
transformed_grid_H.view(

group_elements.numel(),
group_elements.numel(),
1,
1,
1,

).repeat(1, 1, self.kernel_size, self.kernel_size, 1,)
),
dim=-1

)
return transformed_grid

def sample(self, sampled_group_elements):
""" Sample convolution kernels for a given number of group elements

arguments should include:
:param sampled_group_elements: the group elements over which to sample

the convolution kernels

should return:
:return kernels: filter bank extending over all input channels,

containing kernels transformed for all output group elements.
"""
raise NotImplementedError()

Let’s get some intuition for what is happening with our grid when we apply the group action of 𝐻 to it. First we will
inspect the action on R2.

[]: group_kernel_base = GroupKernelBase(
group=CyclicGroup(order=4),
kernel_size=7,
in_channels=1,
out_channels=1

)

Sample the group.
group_elements = group_kernel_base.group.elements()

Transform the grid defined over R2 with the sampled group elements.
(continues on next page)

80 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

transformed_grid_R2 = group_kernel_base.group.left_action_on_R2(
group_kernel_base.group.inverse(group_elements),
group_kernel_base.grid_R2

)

[]: plt.rcParams['figure.figsize'] = [10, 3]

Create [group_elements] figures.
fig, ax = plt.subplots(1, transformed_grid_R2.shape[0])

Fold both spatial dimensions into a single dimension.
transformed_grid_R2 = transformed_grid_R2.reshape(transformed_grid_R2.shape[0],

transformed_grid_R2.
→˓shape[1]*transformed_grid_R2.shape[2],

2).numpy()

Visualize the transformed kernel grids. We mark the same cornerpoint by a blue 'x' in␣
→˓all grids as reference point.
for group_elem in range(transformed_grid_R2.shape[0]):

ax[group_elem].scatter(transformed_grid_R2[group_elem, 0, 0], transformed_grid_
→˓R2[group_elem, 0, 1], marker='x', c='b')

ax[group_elem].scatter(transformed_grid_R2[group_elem, 1:, 0], transformed_grid_
→˓R2[group_elem, 1:, 1], c='r')

fig.text(0.5, 0.04, 'Group elements', ha='center')

plt.show()

As we can see, this part of the grid, and what happens to it, is identical to the grid we saw in the lifting convolution.
Note however, that this is only the spatial dimensions of the grid over which a group convolution kernel is defined.
Let’s move on to the grid over 𝐻 .

[]: plt.rcParams['figure.figsize'] = [5.5, 3]
Transform the grid defined over H with the sampled group elements.
transformed_grid_H = group_kernel_base.group.left_action_on_H(

group_kernel_base.group.inverse(group_elements), group_kernel_base.grid_H
)

Create [group_elements] figures.
fig, ax = plt.subplots(1, transformed_grid_H.shape[0])

Visualize the transformed kernel grids. We mark the same cornerpoint by a blue 'x' in␣
→˓all grids as reference point.
for group_elem in range(transformed_grid_H.shape[0]):

ax[group_elem].scatter(torch.zeros_like(transformed_grid_H[group_elem, 0]),␣
→˓transformed_grid_H[group_elem, 0], marker='x', c='b')

ax[group_elem].scatter(torch.zeros_like(transformed_grid_H[group_elem, 1:]),␣
→˓transformed_grid_H[group_elem, 1:], c='r')

ax[group_elem].set_xticks([])

fig.text(0.5, 0.04, 'Group elements', ha='center')

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 81

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Remove the xticks, our group is 1D!
plt.show()

In our current setting, 𝐻 is one-dimensional, and as we can see, transforming the grid over 𝐻 with all group elements
of 𝐻 leads to a translation over the group. Next, let’s see what happens when we combine these grids.

[]: plt.rcParams['figure.figsize'] = [10, 3]
transformed_grid_R2xH = group_kernel_base.transformed_grid_R2xH

Create [group_elements] figures.
fig, ax = plt.subplots(1, transformed_grid_H.shape[0], subplot_kw=dict(projection='3d'))

Flatten spatial and group grid dimensions.
transformed_grid_R2xH = transformed_grid_R2xH.reshape(transformed_grid_R2xH.shape[0],

transformed_grid_R2xH.shape[1] *␣
→˓transformed_grid_R2xH.shape[2] * transformed_grid_R2xH.shape[3],

transformed_grid_R2xH.shape[4])

Visualize the transformed kernel grids. We mark the same row by a blue 'x' in all grids␣
→˓as reference point.
for group_elem in range(transformed_grid_R2xH.shape[0]):

ax[group_elem].scatter(transformed_grid_R2xH[group_elem, 0:7, 0],
transformed_grid_R2xH[group_elem, 0:7, 1],
transformed_grid_R2xH[group_elem, 0:7, 2],
marker='x',
c='b')

ax[group_elem].scatter(transformed_grid_R2xH[group_elem, 7:, 0],
transformed_grid_R2xH[group_elem, 7:, 1],
transformed_grid_R2xH[group_elem, 7:, 2],
c='r')

fig.text(0.5, 0.04, 'Group elements', ha='center')

plt.show()

As we can see, under the application of group elements ℎ′ ∈ 𝐻 the grid defined over R2 o𝐻 rotates over the spatial
dimensions, and shifts along the group dimension!

Let’s now implement the group kernel using interpolation as well.

Notes:

• Luckily, grid_sample also supports 3D inputs, so we can continue using it.

• For multidimensional groups 𝐻 the following implementation won’t work, as this would require kernels defined
on grids with dimensionality > 3, which grid_sample does not support. To resolve this, one could implement the
sampling of the weights along the 𝐻 dimension using a translation of the weight matrix along the 𝐻 dimensions,
and only interpolate over the spatial dimensions. This is possible because we don’t end up between grid points
along the group dimension 𝐻 (remember the closure constraint of the group product?).

• The 𝐶4 group exhibits periodicity along the group axis, so our kernels should too. Although we correctly im-
plemented the group product to reflect this, grid_sample doesn’t know about the periodicity of the weights in
its interpolation. This shouldn’t be a problem since, again because of the closure constraint, we should always
end up exactly on grid points along the group axis, meaning no interpolation is necessary in that direction. In
practice, because of the way grid_sample is implemented, we may encouter some small interpolation artefacts

82 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

because of this.

[]: class InterpolativeGroupKernel(GroupKernelBase):

def __init__(self, group, kernel_size, in_channels, out_channels):
super().__init__(group, kernel_size, in_channels, out_channels)

Create and initialise a set of weights, we will interpolate these
to create our transformed spatial kernels. Note that our weight
now also extends over the group H.

YOUR CODE STARTS HERE
self.weight = torch.nn.Parameter(torch.zeros((

...
), device=self.group.identity.device))
AND ENDS HERE

initialize weights using kaiming uniform intialisation.
torch.nn.init.kaiming_uniform_(self.weight.data, a=math.sqrt(5))

def sample(self):
""" Sample convolution kernels for a given number of group elements

should return:
:return kernels: filter bank extending over all input channels,

containing kernels transformed for all output group elements.
"""
First, we fold the output channel dim into the input channel dim;
this allows us to transform the entire filter bank in one go using the
torch grid_sample function.

Next, we want a transformed set of weights for each group element so
we repeat the set of spatial weights along the output group axis.

YOUR CODE STARTS HERE
weight = ...
AND ENDS HERE

assert weight.shape == torch.Size((
self.group.elements().numel(),
self.out_channels * self.in_channels,
self.group.elements().numel(),
self.kernel_size,
self.kernel_size

))

Sample the transformed kernels using the grid_sample function.
transformed_weight = grid_sample(

weight,
self.transformed_grid_R2xH,

)

Separate input and output channels. Note we now have a notion of
(continues on next page)

3.5. Practical 4: Regular Group Convolutions 83

ASCI CBL Practicals, Release v1.0

(continued from previous page)

input and output group dimensions in our weight matrix!
transformed_weight = transformed_weight.view(

self.group.elements().numel(), # Output group elements (like in the lifting␣
→˓convolution)

self.out_channels,
self.in_channels,
self.group.elements().numel(), # Input group elements (due to the additional␣

→˓dimension of our feature map)
self.kernel_size,
self.kernel_size

)

Put the output channel dimension before the output group dimension.
transformed_weight = transformed_weight.transpose(0, 1)

return transformed_weight

[]: ik = InterpolativeGroupKernel(
group=CyclicGroup(order=4),
kernel_size=5,
in_channels=2,
out_channels=8

)

[]: weights = ik.sample()
weights.shape

Let’s visualize the sampled group convolution kernels! We visualize our 3D kernels in 2D by folding the input group
dimension into the first spatial dimension. In doing so, we create a 2D flattened version of the 3D group convolution
kernel, where spatial kernels corresponding to the different group elements lie along the spatial dimension. Each
channel goes from [num_group_elem, kernel_size, kernel_size] to [num_group_elem x kernel_size,
kernel_size].

To clearly see what happens to the group convolution kernel under transformation of the group 𝐻 , we outline the spatial
kernel corresponding to the first input group element in red. For subsequent transformations we can see this spatial
kernel. See below!

[]: plt.rcParams['figure.figsize'] = [10, 10]

For ease of viewing, we fold the input group dimension into the spatial x dimension
weights_t = weights.view(

weights.shape[0],
weights.shape[1],
weights.shape[2],
weights.shape[3] * weights.shape[4],
weights.shape[5]

)

pick an output channel to visualize
out_channel_idx = 0

create [in_channels, group_elements] figures
(continues on next page)

84 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

fig, ax = plt.subplots(weights.shape[2], weights.shape[1])

for in_channel in range(weights.shape[2]):
for group_elem in range(weights.shape[1]):

ax[in_channel, group_elem].imshow(
weights_t[out_channel_idx, group_elem, in_channel, :, :].detach()

)

Outline the spatial kernel corresponding to the first group element under␣
→˓canonical transformation

rect = matplotlib.patches.Rectangle(
(-0.5, group_elem * weights_t.shape[-1] - 0.5), weights_t.shape[-1], weights_

→˓t.shape[-1], linewidth=5, edgecolor='r', facecolor='none')
ax[in_channel, group_elem].add_patch(rect)

fig.text(0.5, 0.04, 'Group elements', ha='center')
fig.text(0.04, 0.5, 'Input channels / input group elements', va='center', rotation=
→˓'vertical')

plt.show()

We see the same twist shift motion as we saw with the kernel grids!

2.2.3 Implementing the group convolution

The next step is implementing the group convolution operation.

Notes:

• We would still like to use PyTorch’s Conv2D implementation, but we’re now faced with an additional problem; the
group dimension in the input feature map. Luckily we can resolve this problem in much the same way; normally
a 2D convolution layer integrates over a local neighbourhood of all input channels. We would now additionally
like to integrate over the entire group. Thus, we can simply treat the group dimensions in the input feature map as
additional channel dimensions! We achieve this by folding our input group dimension into the input channel di-
mension; 𝑓𝑖𝑛 is reshaped from [batch, in_channels, num_group_elem, spatial_1, spatial_2] into
[batch, in_channels x num_group_elem, spatial_1, spatial_2].

• To match this, and to apply the same trick as we did in the lifting convolution to get results for each separate group
element in the output, we also reshape our kernel from [out_channels, num_group_elem, in_channels,
num_group_elem, kernel_size, kernel_size] to [out_channels x num_group_elem,
in_channels x num_group_elem, kernel_size, kernel_size]. See below!

[]: class GroupConvolution(torch.nn.Module):

def __init__(self, group, in_channels, out_channels, kernel_size):
super().__init__()

self.kernel = InterpolativeGroupKernel(
group=group,
kernel_size=kernel_size,
in_channels=in_channels,
out_channels=out_channels

)
(continues on next page)

3.5. Practical 4: Regular Group Convolutions 85

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def forward(self, x):
""" Perform group convolution

@param x: Input sample [batch_dim, in_channels, group_dim, spatial_dim_1,
spatial_dim_2]

@return: Function on a homogeneous space of the group
[batch_dim, out_channels, num_group_elements, spatial_dim_1,
spatial_dim_2]

"""

We now fold the group dimensions of our input into the input channel
dimension.

YOUR CODE STARTS HERE
x = x.reshape(

...
)
AND ENDS HERE

We obtain convolution kernels transformed under the group.

YOUR CODE STARTS HERE
conv_kernels = ...
AND ENDS HERE

Apply group convolution, note that the reshape folds the 'output' group
dimension of the kernel into the output channel dimension, and the
'input' group dimension into the input channel dimension.

Question: Do you see why we (can) do this?

YOUR CODE STARTS HERE
x = ...
AND ENDS HERE

Reshape [batch_dim, in_channels * num_group_elements, spatial_dim_1,
spatial_dim_2] into [batch_dim, in_channels, num_group_elements,
spatial_dim_1, spatial_dim_2], separating channel and group
dimensions.
x = x.view(

-1,
self.kernel.out_channels,
self.kernel.group.elements().numel(),
x.shape[-1],
x.shape[-2],

)

return x

86 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

2.3 Projection to obtain invariance and tying everything together

Up until now, our feature maps equivary with the group action of R2 o 𝐻; our feature maps are defined over R2 o
𝐻 . Usually in a CNN, a series of convolutional layers build a representation, which is followed by a (number of)
linear layer(s). To create a GCNN using our lifting and group convolution operations that is fully invariant to the
action of the group, we must apply a projection operation invariant to the action of the group to our feature map, to
reduce its dimensionality from [batch, channels, num_group_elem, spatial_1, spatial_2] to [batch,
channels] or even . The representation that we obtain then is fully invariant to the group. This representation is
pushed through a final linear layer to yield a classification.

Below, we build a small GCNN from our implemented PyTorch modules.

Notes:

• We use a mean-pooling operation to pool over group and spatial dimensions, but we could also use max or min
pooling, or any other operation invariant to the group.

[]: from torch.nn import AdaptiveAvgPool3d

class GroupEquivariantCNN(torch.nn.Module):

def __init__(self, group, in_channels, out_channels, kernel_size, num_hidden, hidden_
→˓channels):

super().__init__()

Create the lifing convolution.

YOUR CODE STARTS HERE
self.lifting_conv = ...
AND ENDS HERE

Create a set of group convolutions.
self.gconvs = torch.nn.ModuleList()

YOUR CODE STARTS HERE
for i in range(num_hidden):

self.gconvs.append(
...

)
AND ENDS HERE

Create the projection layer. Hint: check the import at the top of
this cell.

YOUR CODE STARTS HERE
self.projection_layer = ...
AND ENDS HERE

And a final linear layer for classification.
self.final_linear = torch.nn.Linear(hidden_channels, out_channels)

def forward(self, x):

Lift and disentangle features in the input.
(continues on next page)

3.5. Practical 4: Regular Group Convolutions 87

ASCI CBL Practicals, Release v1.0

(continued from previous page)

x = self.lifting_conv(x)
x = torch.nn.functional.layer_norm(x, x.shape[-4:])
x = torch.nn.functional.relu(x)

Apply group convolutions.
for gconv in self.gconvs:

x = gconv(x)
x = torch.nn.functional.layer_norm(x, x.shape[-4:])
x = torch.nn.functional.relu(x)

to ensure equivariance, apply max pooling over group and spatial dims.
x = self.projection_layer(x).squeeze()

x = self.final_linear(x)
return x

To compare, let’s create a more or less identical CNN. The only difference here is that this network consists of regular
convolution operations.

[]: class CNN(torch.nn.Module):

def __init__(self, in_channels, out_channels, kernel_size, num_hidden, hidden_
→˓channels):

super().__init__()

self.first_conv = torch.nn.Conv2d(
in_channels=in_channels,
out_channels=hidden_channels,
kernel_size=kernel_size

)

self.convs = torch.nn.ModuleList()
for i in range(num_hidden):

self.convs.append(
torch.nn.Conv2d(

in_channels=hidden_channels,
out_channels=hidden_channels,
kernel_size=kernel_size

)
)

self.final_linear = torch.nn.Linear(hidden_channels, out_channels)

def forward(self, x):

x = self.first_conv(x)
x = torch.nn.functional.layer_norm(x, x.shape[-3:])
x = torch.nn.functional.relu(x)

for conv in self.convs:
x = conv(x)
x = torch.nn.functional.layer_norm(x, x.shape[-3:])

(continues on next page)

88 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

x = torch.nn.functional.relu(x)

Apply average pooling over remaining spatial dimensions.
x = torch.nn.functional.adaptive_avg_pool2d(x, 1).squeeze()

x = self.final_linear(x)
return x

3.5.4 Part 3: Experimenting with our implementation

Note that for ease of model training and tracking, we additionally make use of pytorch-lightning as in the previous
practicals.

3.1 Generalization to the group action

To show the generalization capabilities of regular group convolutional networks, we will train this model on the MNIST
training dataset, but evaluate it on an augmented version of the MNIST test set in which each image is randomly rotated
by a continuous rotation between [0, 2𝜋].

[]: # We normalize the training data.
train_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),

torchvision.transforms.Normalize((0.
→˓1307,), (0.3081,))

])

To demonstrate the generalization capabilities our rotation equivariant layers bring,␣
→˓we apply a random
rotation between 0 and 360 deg to the test set.
test_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),

torchvision.transforms.RandomRotation(
[0, 360],
torchvision.transforms.

→˓InterpolationMode.BILINEAR,
fill=0),

torchvision.transforms.Normalize((0.
→˓1307,), (0.3081,))

])

We demonstrate our models on the MNIST dataset.
train_ds = torchvision.datasets.MNIST(root=DATASET_PATH, train=True, transform=train_
→˓transform, download=True)
test_ds = torchvision.datasets.MNIST(root=DATASET_PATH, train=False, transform=test_
→˓transform)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=64, shuffle=False)

Set the random seed for reproducibility.
pl.seed_everything(12)

Let’s visualize some of the training and test images. As we can see the test images are randomly rotated.

3.5. Practical 4: Regular Group Convolutions 89

ASCI CBL Practicals, Release v1.0

[]: NUM_IMAGES = 4
images = [train_ds[idx][0] for idx in range(NUM_IMAGES)]
orig_images = [Image.fromarray(train_ds.data[idx].numpy()) for idx in range(NUM_IMAGES)]
orig_images = [test_transform(img) for img in orig_images]

img_grid = torchvision.utils.make_grid(torch.stack(images + orig_images, dim=0), nrow=4,␣
→˓normalize=True, pad_value=0.5)
img_grid = img_grid.permute(1, 2, 0)

plt.figure(figsize=(8,8))
plt.title("Images sampled from the MNIST train set, augmented with test transforms.")
plt.imshow(img_grid)
plt.axis('off')
plt.show()
plt.close()

[]: class DataModule(pl.LightningModule):

def __init__(self, model_name, model_hparams, optimizer_name, optimizer_hparams):
"""
Inputs:

model_name - Name of the model/CNN to run. Used for creating the model (see␣
→˓function below)

model_hparams - Hyperparameters for the model, as dictionary.
optimizer_name - Name of the optimizer to use. Currently supported: Adam, SGD
optimizer_hparams - Hyperparameters for the optimizer, as dictionary. This␣

→˓includes learning rate, weight decay, etc.
"""
super().__init__()
Exports the hyperparameters to a YAML file, and create "self.hparams" namespace
self.save_hyperparameters()
Create model
self.model = create_model(model_name, model_hparams)
Create loss module
self.loss_module = nn.CrossEntropyLoss()

def forward(self, imgs):
return self.model(imgs)

def configure_optimizers(self):
AdamW is Adam with a correct implementation of weight decay (see here for␣

→˓details: https://arxiv.org/pdf/1711.05101.pdf)
optimizer = optim.AdamW(

self.parameters(), **self.hparams.optimizer_hparams)
return [optimizer], []

def training_step(self, batch, batch_idx):
"batch" is the output of the training data loader.
imgs, labels = batch
preds = self.model(imgs)
loss = self.loss_module(preds, labels)
acc = (preds.argmax(dim=-1) == labels).float().mean()

(continues on next page)

90 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Logs the accuracy per epoch to tensorboard (weighted average over batches)
self.log('train_acc', acc, on_step=False, on_epoch=True)
self.log('train_loss', loss)
return loss # Return tensor to call ".backward" on

def validation_step(self, batch, batch_idx):
imgs, labels = batch
preds = self.model(imgs).argmax(dim=-1)
acc = (labels == preds).float().mean()
By default logs it per epoch (weighted average over batches)
self.log('val_acc', acc, prog_bar=True)

def test_step(self, batch, batch_idx):
imgs, labels = batch
preds = self.model(imgs).argmax(dim=-1)
acc = (labels == preds).float().mean()
By default logs it per epoch (weighted average over batches), and returns it␣

→˓afterwards
self.log('test_acc', acc, prog_bar=True)

We create a dictionary to keep track of our models

[]: model_dict = {
'CNN': CNN,
'GCNN': GroupEquivariantCNN

}

def create_model(model_name, model_hparams):
if model_name in model_dict:

return model_dict[model_name](**model_hparams)
else:

assert False, f"Unknown model name \"{model_name}\". Available models are:
→˓{str(model_dict.keys())}"

[]: def train_model(model_name, max_epochs=10, save_name=None, **kwargs):
"""
Inputs:

model_name - Name of the model you want to run. Is used to look up the class in
→˓"model_dict"

save_name (optional) - If specified, this name will be used for creating the␣
→˓checkpoint and logging directory.
"""
if save_name is None:

save_name = model_name

Create a PyTorch Lightning trainer with the generation callback
trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH, save_name), ␣

→˓ # Where to save models
gpus=1 if str(device)=="cuda:0" else 0, ␣

→˓ # We run on a single GPU (if possible)
max_epochs=max_epochs, ␣

→˓ # How many epochs to train for if no patience is set (continues on next page)

3.5. Practical 4: Regular Group Convolutions 91

ASCI CBL Practicals, Release v1.0

(continued from previous page)

callbacks=[ModelCheckpoint(save_weights_only=True, mode="max",␣
→˓monitor="val_acc"), # Save the best checkpoint based on the maximum val_acc recorded.␣
→˓Saves only weights and not optimizer

LearningRateMonitor("epoch")])
trainer.logger._default_hp_metric = None # Optional logging argument that we don't␣

→˓need

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, save_name + ".ckpt")

if os.path.isfile(pretrained_filename):
print(f"Found pretrained model at {pretrained_filename}, loading...")
model = DataModule.load_from_checkpoint(pretrained_filename) # Automatically␣

→˓loads the model with the saved hyperparameters
else:

pl.seed_everything(12) # To be reproducable
model = DataModule(model_name=model_name, **kwargs)
trainer.fit(model, train_loader, test_loader)
model = DataModule.load_from_checkpoint(trainer.checkpoint_callback.best_model_

→˓path) # Load best checkpoint after training

Test best model on test set
val_result = trainer.test(model.to(device), test_loader, verbose=False)
result = {"val": val_result[0]["test_acc"]}

return model, result

Let’s train the conventional CNN first! For this experiment, 10 epochs is sufficient for seeing the overall trend.

[]: cnn_model, cnn_results = train_model(model_name="CNN",
model_hparams={"in_channels": 1,

"out_channels": 10,
"kernel_size": 5,
"num_hidden":4,
"hidden_channels":32},

optimizer_name="Adam",
optimizer_hparams={"lr": 1e-2,

"weight_decay": 1e-4},
save_name='cnn-pretrained',
max_epochs=10)

Next, we train the GCNN. Note that we reduce the number of channels by half to account for the increased kernel
dimensionality. We do this to keep the number of trainable parameters more or less equal.

[]: gcnn_model, gcnn_results = train_model(model_name="GCNN",
model_hparams={"in_channels": 1,

"out_channels": 10,
"kernel_size": 5,
"num_hidden": 4,
"hidden_channels":16, # to account␣

→˓for the increase in trainable parameters due to the extra dimension in our feature␣
→˓maps, remove some hidden channels.

(continues on next page)

92 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

"group":CyclicGroup(order=4).
→˓to(device)},

optimizer_name="Adam",
optimizer_hparams={"lr": 1e-2,

"weight_decay": 1e-4},
save_name='gcnn-pretrained',
max_epochs=10)

[]: %%html
<!-- Some HTML code to increase font size in the following table -->
<style>
th {font-size: 120%;}
td {font-size: 120%;}
</style>

Let us inspect the final results from both models. As we can see the GCNN performs considerably better than the
CNN. This because the GCNN implementation is invariant to rotations of 90 deg, which makes it able to recognize
the handwritten digits in the test set under such rotations. Of course, since the test images are rotated by continuous
rotations between 0 and 360 deg, the GCNN model still doesn’t obtain perfect accuracy. How could we further improve
the GCNNs generalization?

[]: import tabulate
from IPython.display import display, HTML
all_models = [

("CNN", cnn_results, cnn_model),
("GCNN", gcnn_results, gcnn_model),

]
table = [[model_name,

f"{100.0*model_results['val']:4.2f}%",
"{:,}".format(sum([np.prod(p.shape) for p in model.parameters()]))]
for model_name, model_results, model in all_models]

display(HTML(tabulate.tabulate(table, tablefmt='html', headers=["Model", "Val Accuracy",
→˓"Num Parameters"])))

Include aboves tables in your report.

3.2 Inspecting the created feature maps

Note: This section contains couple of questions regarding the visualizations. Include an answer to each of the question
in your report.

To better understand what happens inside our CNN and GCNN as we rotate an input image, let’s visualize a single
channel of a feature map in the second layer of the network for different rotations of an input image.

[]: train_ds = torchvision.datasets.MNIST(root=DATASET_PATH, train=False, transform=None)

Get an image from the test dataset.
digit, label = train_ds[123]

Turn it into a tensor.
digit = transforms.ToTensor()(digit)

(continues on next page)

3.5. Practical 4: Regular Group Convolutions 93

ASCI CBL Practicals, Release v1.0

(continued from previous page)

plt.figure(figsize=(6, 6))
plt.imshow(digit.squeeze())
plt.title(f'Label: {label}')
plt.show()

[]: plt.rcParams['figure.figsize'] = [10, 3]

Get a set of angles by which to rotate this image.
rots = torch.linspace(0, 360 - 360/8, 8)

Rotate the input image and push it through the normalization transform.
rot_digit = torch.stack(tuple(torchvision.transforms.functional.rotate(digit, a.item(),␣
→˓torchvision.transforms.functional.InterpolationMode.BILINEAR) for a in rots))
rot_digit = torchvision.transforms.Normalize((0.1307,), (0.3081,))(rot_digit)

Create a subfigure for every rotated input.
fig, ax = plt.subplots(1, rots.numel())

for idx, rotation in enumerate(rots):
ax[idx].imshow(

rot_digit[idx, :, :].squeeze()
)
ax[idx].set_title(f"{int(rotation)} deg")

fig.text(0.5, 0.04, 'Rotations of input image', ha='center')

plt.show()

[]: # Forward it through the first few layers of the CNN.
cnn_out = cnn_model.model.first_conv(rot_digit)
cnn_out = torch.nn.functional.relu(torch.nn.functional.layer_norm(cnn_out, cnn_out.
→˓shape[-3:]))
for i in range(2):

cnn_out = cnn_model.model.convs[i](cnn_out)
cnn_out = torch.nn.functional.relu(torch.nn.functional.layer_norm(cnn_out, cnn_out.

→˓shape[-3:]))

Let's also see what happens after we apply projection over remaining spatial dimensions.
projected_cnn_out = torch.nn.functional.adaptive_avg_pool2d(cnn_out, 1).squeeze()

Forward it through the first few layers of the GCNN.
gcnn_out = gcnn_model.model.lifting_conv(rot_digit)
gcnn_out = torch.nn.functional.relu(torch.nn.functional.layer_norm(gcnn_out, gcnn_out.
→˓shape[-4:]))
for i in range(2):

gcnn_out = gcnn_model.model.gconvs[i](gcnn_out)
gcnn_out = torch.nn.functional.relu(torch.nn.functional.layer_norm(gcnn_out, gcnn_

→˓out.shape[-4:]))

And let's see what happens if we apply the projection on this equivariant␣
→˓representation.
projected_gcnn_out = torch.mean(gcnn_out, dim=(-3, -2, -1))

94 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

Let’s first visualize the activations after the third convolution for a single channel of the regular CNN.

[]: plt.rcParams['figure.figsize'] = [10, 3]

Pick a channel to visualize
channel_idx = 2

Create a subfigure for every rotated input
fig, ax = plt.subplots(1, rots.numel())

for idx, rotation in enumerate(rots):
ax[idx].imshow(

cnn_out[idx, out_channel_idx, :, :].detach().numpy()
)
ax[idx].set_title(f"{int(rotation)} deg")

fig.text(0.5, 0.04, 'Rotations of input image', ha='center')

plt.show()

Question: Explain what you see in the above images; how should we interpret what is happening to the feature maps
as the input is rotated?

Next, we’ll visualize activations after the third convolution operation for the G-CNN.

[]: plt.rcParams['figure.figsize'] = [10, 9]

Pick a channel to visualize
channel_idx = 2

Create a subfigure for every rotated input and every group element
fig, ax = plt.subplots(gcnn_out.shape[2], rots.numel())

for idx, rotation in enumerate(rots):
for group_element_idx in range(gcnn_out.shape[2]):

ax[group_element_idx ,idx].imshow(
gcnn_out[idx, out_channel_idx, group_element_idx, :, :].detach().numpy()

)
ax[0, idx].set_title(f"{int(rotation)} deg")

fig.text(0.5, 0.04, 'Rotations of input image', ha='center')
fig.text(0.04, 0.5, 'H dimension in feature map', va='center', rotation='vertical')

plt.show()

Question: Explain what you see in the above images; how should we interpret what is happening to the feature maps
as the input is rotated? What happens after a 45 degree rotation? And a 90 degree rotation?

Lastly, we inspect the representations we obtain after the projection step for the CNN and GCNN. We visualize all
channels. These are the representations on which the final linear layer(s) perform classification.

[]: plt.rcParams['figure.figsize'] = [8, 8]

Create a subfigure for every rotated input
(continues on next page)

3.5. Practical 4: Regular Group Convolutions 95

ASCI CBL Practicals, Release v1.0

(continued from previous page)

fig, ax = plt.subplots(rots.numel(), 1)

for idx, rotation in enumerate(rots):
ax[idx].imshow(

projected_cnn_out[idx, None, :].detach().numpy()
)
ax[idx].set_title(f"{int(rotation)} deg")
ax[idx].set_yticks([])

fig.text(0.5, 0.04, 'Channels', ha='center')
fig.text(0.04, 0.5, 'Rotations of input image', va='center', rotation='vertical')

plt.show()

Question: What happens to the learned representations as the input is rotated? What consequences do you think this
has on the performance of the model?

[]: plt.rcParams['figure.figsize'] = [8, 8]

Create a subfigure for every rotated input
fig, ax = plt.subplots(rots.numel(), 1)

for idx, rotation in enumerate(rots):
ax[idx].imshow(

projected_gcnn_out[idx, None, :].detach().numpy()
)
ax[idx].set_title(f"{int(rotation)} deg")
ax[idx].set_yticks([])

fig.text(0.5, 0.04, 'Channels', ha='center')
fig.text(0.04, 0.5, 'Rotations of input image', va='center', rotation='vertical')

plt.show()

Question: Explain what you see above. What does this mean for the final of input samples that are rotated?

Question: Do you notice anything about the learned representations of 45 degree vs 90 degree rotated input samples?
To what can we attribute this phenomenon do you think?

3.5.5 Concluding remarks

We’ve seen how to implement a basic regular group convolutional network equivariant to rotations of 90 degrees. A
couple suggestions of things to ponder on. Include answers to these questions in your report:

• What other groups could be interesting in computer vision problems? (these often come with their own interesting
challenges).

• We used interpolation to obtain our values for transformed kernels. As mentioned, this makes our networks
prone to interpolation artefacts. Would our interpolation implementation work well for other groups? Could you
maybe think of other ways of defining the kernel over a continuous domain?

• Here we worked with a one-dimensional group. What would it take to implement group convolutions for multi-
dimensional groups 𝐻?

96 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

3.6 Practical 5: Self-Supervised Contrastive Learning with SimCLR

Open notebook:
Authors: Phillip Lippe

In this practical, we will take a closer look at self-supervised contrastive learning. Self-supervised learning, or also
sometimes called unsupervised learning, describes the scenario where we have given input data, but no accompanying
labels to train in a classical supervised way. However, this data still contains a lot of information from which we can
learn: how are the images different from each other? What patterns are descriptive for certain images? Can we cluster
the images? And so on. Methods for self-supervised learning try to learn as much as possible from the data alone,
so it can quickly be finetuned for a specific classification task. The benefit of self-supervised learning is that a large
dataset can often easily be obtained. For instance, if we want to train a vision model on semantic segmentation for
autonomous driving, we can collect large amounts of data by simply installing a camera in a car, and driving through
a city for an hour. In contrast, if we would want to do supervised learning, we would have to manually label all those
images before training a model. This is extremely expensive, and would likely take a couple of months to manually
label the same amount of data. Further, self-supervised learning can provide an alternative to transfer learning from
models pretrained on ImageNet since we could pretrain a model on a specific dataset/situation, e.g. traffic scenarios
for autonomous driving.

Within the last two years, a lot of new approaches have been proposed for self-supervised learning, in particular for
images, that have resulted in great improvements over supervised models when few labels are available. The subfield
that we will focus on in this tutorial is contrastive learning. Contrastive learning is motivated by the question mentioned
above: how are images different from each other? Specifically, contrastive learning methods train a model to cluster
an image and its slightly augmented version in latent space, while the distance to other images should be maximized.
A very recent and simple method for this is SimCLR, which is visualized below (figure credit - Ting Chen et al.).

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 97

https://github.com/phlippe/asci_cbl_practicals/blob/main/notebooks/5_Self_Supervised_Learning.ipynb
https://colab.research.google.com/github/phlippe/asci_cbl_practicals/blob/main/notebooks/5_Self_Supervised_Learning.ipynb
https://arxiv.org/abs/2006.10029
https://simclr.github.io/

ASCI CBL Practicals, Release v1.0

The general setup is that we are given a dataset of images without any labels, and want to train a model on this data such
that it can quickly adapt to any image recognition task afterward. During each training iteration, we sample a batch
of images as usual. For each image, we create two versions by applying data augmentation techniques like cropping,
Gaussian noise, blurring, etc. An example of such is shown on the left with the image of the dog. We will go into the
details and effects of the chosen augmentation techniques later. On those images, we apply a CNN like ResNet and
obtain as output a 1D feature vector on which we apply a small MLP. The output features of the two augmented images
are then trained to be close to each other, while all other images in that batch should be as different as possible. This
way, the model has to learn to recognize the content of the image that remains unchanged under the data augmentations,
such as objects which we usually care about in supervised tasks.

We will now implement this framework ourselves and discuss further details along the way. Let’s first start with
importing our standard libraries below:

[1]: ## Standard libraries
import os
import numpy as np
import random
import math
import json
from functools import partial
from PIL import Image

(continues on next page)

98 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()

tqdm for loading bars
from tqdm.notebook import tqdm

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim

Torchvision
import torchvision
from torchvision.datasets import CIFAR10, STL10
from torchvision import transforms

PyTorch Lightning
try:

import pytorch_lightning as pl
except ModuleNotFoundError: # Google Colab does not have PyTorch Lightning installed by␣
→˓default. Hence, we do it here if necessary

!pip install --quiet pytorch-lightning>=1.6
import pytorch_lightning as pl

from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint

Import tensorboard
%load_ext tensorboard

Path to the folder where the datasets are/should be downloaded (e.g. CIFAR10)
DATASET_PATH = "../data"
Path to the folder where the pretrained models are saved
CHECKPOINT_PATH = "../saved_models/practical5"

Setting the seed
pl.seed_everything(42)
In this notebook, we use data loaders with heavier computational processing. It is␣
→˓recommended to use as many
workers as possible in a data loader, which corresponds to the number of CPU cores
NUM_WORKERS = os.cpu_count()

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)

(continues on next page)

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 99

ASCI CBL Practicals, Release v1.0

(continued from previous page)

print("Number of workers:", NUM_WORKERS)

Global seed set to 42

Device: cuda:0
Number of workers: 16

3.6.1 Data Augmentation for Contrastive Learning

We will start our exploration of contrastive learning by discussing the effect of different data augmentation techniques,
and how we can implement an efficient data loader for such. To allow efficient training, we need to prepare the data
loading such that we sample two different, random augmentations for each image in the batch. The easiest way to do
this is by creating a transformation that, when being called, applies a set of data augmentations to an image twice. This
is implemented in the class ContrastiveTransformations below:

[2]: class ContrastiveTransformations(object):

def __init__(self, base_transforms, n_views=2):
self.base_transforms = base_transforms
self.n_views = n_views

def __call__(self, x):
return [self.base_transforms(x) for i in range(self.n_views)]

The contrastive learning framework can easily be extended to have more positive examples by sampling more than two
augmentations of the same image. However, the most efficient training is usually obtained by using only two.

Next, we can look at the specific augmentations we want to apply. The choice of the data augmentation to use is the
most crucial hyperparameter in SimCLR since it directly affects how the latent space is structured, and what patterns
might be learned from the data. Let’s first take a look at some of the most popular data augmentations (figure credit -
Ting Chen and Geoffrey Hinton):

All of them can be used, but it turns out that two augmentations stand out in their importance: crop-and-resize, and color
distortion. Interestingly, however, they only lead to strong performance if they have been used together as discussed
by Ting Chen et al. in their SimCLR paper. When performing randomly cropping and resizing, we can distinguish

100 Chapter 3. Report submission

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
https://arxiv.org/abs/2006.10029

ASCI CBL Practicals, Release v1.0

between two situations: (a) cropped image A provides a local view of cropped image B, or (b) cropped images C and
D show neighboring views of the same image (figure credit - Ting Chen and Geoffrey Hinton).

While situation (a) requires the model to learn some sort of scale invariance to make crops A and B similar in latent
space, situation (b) is more challenging since the model needs to recognize an object beyond its limited view. However,
without color distortion, there is a loophole that the model can exploit, namely that different crops of the same image
usually look very similar in color space. Consider the picture of the dog above. Simply from the color of the fur and
the green color tone of the background, you can reason that two patches belong to the same image without actually
recognizing the dog in the picture. In this case, the model might end up focusing only on the color histograms of the
images, and ignore other more generalizable features. If, however, we distort the colors in the two patches randomly
and independently of each other, the model cannot rely on this simple feature anymore. Hence, by combining random
cropping and color distortions, the model can only match two patches by learning generalizable representations.

Overall, for our experiments, we apply a set of 5 transformations following the original SimCLR setup: random hori-
zontal flip, crop-and-resize, color distortion, random grayscale, and gaussian blur. In comparison to the original imple-
mentation, we reduce the effect of the color jitter slightly (0.5 instead of 0.8 for brightness, contrast, and saturation, and
0.1 instead of 0.2 for hue). In our experiments, this setting obtained better performance and was faster and more stable
to train. If, for instance, the brightness scale highly varies in a dataset, the original settings can be more beneficial since
the model can’t rely on this information anymore to distinguish between images.

[3]: contrast_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(size=32, scale=(0.

→˓25, 1.0)),
transforms.RandomApply([

transforms.ColorJitter(brightness=0.5,
contrast=0.5,
saturation=0.5,
hue=0.1)

], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.GaussianBlur(kernel_size=3),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))

])

After discussing the data augmentation techniques, we can now focus on the dataset. In this tutorial, we will use the
STL10 dataset, which, similarly to CIFAR10, contains images of 10 classes: airplane, bird, car, cat, deer, dog, horse,
monkey, ship, truck. However, the images have a higher resolution, namely 96 × 96 pixels, and we are only provided
with 500 labeled images per class. Additionally, we have a much larger set of 100, 000 unlabeled images which are
similar to the training images but are sampled from a wider range of animals and vehicles. This makes the dataset ideal
to showcase the benefits that self-supervised learning offers. For this practical, however, to reduce the computationally
complexity, we will downscale the images back to 32 × 32 pixels.

Luckily, the STL10 dataset is provided through torchvision. Keep in mind, however, that since this dataset is relatively
large and has a considerably higher resolution than CIFAR10, it requires more disk space (~3GB) and takes a bit of time
to download. For our initial discussion of self-supervised learning and SimCLR, we will create two data loaders with
our contrastive transformations above: the unlabeled_data will be used to train our model via contrastive learning,
and train_data_contrast will be used as a validation set in contrastive learning.

[4]: unlabeled_data = STL10(root=DATASET_PATH, split='unlabeled', download=True,
transform=ContrastiveTransformations(contrast_transforms, n_

→˓views=2))
train_data_contrast = STL10(root=DATASET_PATH, split='train', download=True,

transform=ContrastiveTransformations(contrast_transforms, n_
→˓views=2)) (continues on next page)

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 101

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://cs.stanford.edu/~acoates/stl10/

ASCI CBL Practicals, Release v1.0

(continued from previous page)

Files already downloaded and verified
Files already downloaded and verified

[5]: # Downscale images to 32x32 directly in arrays to save RAM and data loading computation
def downscale_dataset(dataset):

data = dataset.data
num_imgs = data.shape[0]
new_data = np.zeros((num_imgs, data.shape[1], 32, 32), dtype=data.dtype)
for i in tqdm(range(0, num_imgs, 100)):

new_data[i:i+100] = transforms.functional.resize(torch.from_numpy(data[i:i+100]).
→˓float(), size=[32, 32]).to(torch.uint8).numpy()

dataset.data = new_data

downscale_dataset(unlabeled_data)
downscale_dataset(train_data_contrast)

0%| | 0/1000 [00:00<?, ?it/s]

0%| | 0/50 [00:00<?, ?it/s]

Finally, before starting with our implementation of SimCLR, let’s look at some example image pairs sampled with our
augmentations:

[6]: # Visualize some examples
pl.seed_everything(42)
NUM_IMAGES = 6
imgs = torch.stack([img for idx in range(NUM_IMAGES) for img in unlabeled_data[idx][0]],␣
→˓dim=0)
img_grid = torchvision.utils.make_grid(imgs, nrow=6, normalize=True, pad_value=0.9)
img_grid = img_grid.permute(1, 2, 0)

plt.figure(figsize=(14,7))
plt.title('Augmented image examples of the STL10 dataset', fontsize=20)
plt.imshow(img_grid)
plt.axis('off')
plt.show()
plt.close()

Global seed set to 42

102 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

We see the wide variety of our data augmentation, including randomly cropping, grayscaling, gaussian blur, and color
distortion. Thus, it remains a challenging task for the model to match two, independently augmented patches of the
same image.

3.6.2 Part 1: SimCLR implementation

Using the data loader pipeline above, we can now implement SimCLR. At each iteration, we get for every image 𝑥
two differently augmented versions, which we refer to as �̃�𝑖 and �̃�𝑗 . Both of these images are encoded into a one-
dimensional feature vector, between which we want to maximize similarity which minimizes it to all other images
in the batch. The encoder network is split into two parts: a base encoder network 𝑓(·), and a projection head 𝑔(·).
The base network is usually a deep CNN as we have seen in e.g. Tutorial 5 before, and is responsible for extracting
a representation vector from the augmented data examples. In our experiments, we will use the common ResNet-18
architecture as 𝑓(·), and refer to the output as 𝑓(�̃�𝑖) = ℎ𝑖. The projection head 𝑔(·) maps the representation ℎ into a
space where we apply the contrastive loss, i.e., compare similarities between vectors. It is often chosen to be a small
MLP with non-linearities, and for simplicity, we follow the original SimCLR paper setup by defining it as a two-layer
MLP with ReLU activation in the hidden layer. Note that in the follow-up paper, SimCLRv2, the authors mention
that larger/wider MLPs can boost the performance considerably. This is why we apply an MLP with four times larger
hidden dimensions, but deeper MLPs showed to overfit on the given dataset. The general setup is visualized below
(figure credit - Ting Chen et al.):

After finishing the training with contrastive learning, we will remove the projection head 𝑔(·), and use 𝑓(·) as a pre-
trained feature extractor. The representations 𝑧 that come out of the projection head 𝑔(·) have been shown to perform
worse than those of the base network 𝑓(·) when finetuning the network for a new task. This is likely because the repre-
sentations 𝑧 are trained to become invariant to many features like the color that can be important for downstream tasks.
Thus, 𝑔(·) is only needed for the contrastive learning stage.

Let’s first start by implementing a Base Network which will represent function 𝑓(·). Usually, you would use very large,
powerful networks like a deep ResNet, but these are very expensive to train. To reduce the computational cost and
make it possible to reasonable train the models on Google Colab, we provide a very simple CNN here:

[]: class BaseNetwork(nn.Module):

def __init__(self, num_input_channels, c_hid, output_dim):
"""
Inputs:

- num_input_channels : Number of input channels of the image. For CIFAR,␣
→˓this parameter is 3 (continues on next page)

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 103

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html
https://arxiv.org/abs/2006.10029
https://arxiv.org/abs/2006.10029

ASCI CBL Practicals, Release v1.0

(continued from previous page)

- c_hid : Number of channels we use in the first convolutional layers.␣
→˓Deeper layers might use a duplicate of it.

- output_dim : Dimensionality of the final latent representation
"""
super().__init__()
self.net = nn.Sequential(

nn.Conv2d(num_input_channels, c_hid, kernel_size=3, padding=1, stride=2), #␣
→˓32x32 => 16x16

nn.BatchNorm2d(c_hid),
nn.SiLU(),
nn.Conv2d(c_hid, c_hid, kernel_size=3, padding=1),
nn.BatchNorm2d(c_hid),
nn.SiLU(),
nn.Conv2d(c_hid, 2*c_hid, kernel_size=3, padding=1, stride=2), # 16x16 => 8x8
nn.BatchNorm2d(2*c_hid),
nn.SiLU(),
nn.Conv2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1),
nn.BatchNorm2d(2*c_hid),
nn.SiLU(),
nn.Conv2d(2*c_hid, 2*c_hid, kernel_size=3, padding=1, stride=2), # 8x8 => 4x4
nn.BatchNorm2d(2*c_hid),
nn.SiLU(),
nn.Flatten(), # Image grid to single feature vector
nn.Linear(2*16*c_hid, output_dim)

)

def forward(self, x):
return self.net(x)

Now that the architecture is described, let’s take a closer look at how we train the model. As mentioned before, we want
to maximize the similarity between the representations of the two augmented versions of the same image, i.e., 𝑧𝑖 and
𝑧𝑗 in the figure above, while minimizing it to all other examples in the batch. SimCLR thereby applies the InfoNCE
loss, originally proposed by Aaron van den Oord et al. for contrastive learning. In short, the InfoNCE loss compares
the similarity of 𝑧𝑖 and 𝑧𝑗 to the similarity of 𝑧𝑖 to any other representation in the batch by performing a softmax over
the similarity values. The loss can be formally written as:

ℓ𝑖,𝑗 = − log
exp(sim(𝑧𝑖, 𝑧𝑗)/𝜏)∑︀2𝑁

𝑘=1 1[𝑘 ̸=𝑖] exp(sim(𝑧𝑖, 𝑧𝑘)/𝜏)
= −sim(𝑧𝑖, 𝑧𝑗)/𝜏 + log

[︃
2𝑁∑︁
𝑘=1

1[𝑘 ̸=𝑖] exp(sim(𝑧𝑖, 𝑧𝑘)/𝜏)

]︃

The function sim is a similarity metric, and the hyperparameter 𝜏 is called temperature determining how peaked the
distribution is. Since many similarity metrics are bounded, the temperature parameter allows us to balance the influence
of many dissimilar image patches versus one similar patch. The similarity metric that is used in SimCLR is cosine
similarity, as defined below:

sim(𝑧𝑖, 𝑧𝑗) =
𝑧⊤𝑖 · 𝑧𝑗

||𝑧𝑖|| · ||𝑧𝑗 ||

The maximum cosine similarity possible is 1, while the minimum is −1. In general, we will see that the features of
two different images will converge to a cosine similarity around zero since the minimum, −1, would require 𝑧𝑖 and 𝑧𝑗
to be in the exact opposite direction in all feature dimensions, which does not allow for great flexibility.

Finally, now that we have discussed all details, let’s implement SimCLR below as a PyTorch Lightning module:

104 Chapter 3. Report submission

https://arxiv.org/abs/1807.03748

ASCI CBL Practicals, Release v1.0

[]: class SimCLR(pl.LightningModule):

def __init__(self, hidden_dim, lr, temperature, weight_decay, max_epochs=500):
super().__init__()
self.save_hyperparameters()
assert self.hparams.temperature > 0.0, 'The temperature must be a positive float!

→˓'
TODO: Setup the Base Network
raise NotImplementedError

def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(),

lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay)

lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=self.hparams.max_

→˓epochs,
eta_min=self.hparams.lr/50)

return [optimizer], [lr_scheduler]

def info_nce_loss(self, batch, mode='train'):
imgs, _ = batch # we do not need the labels here
imgs is a list of length 2, where imgs[0][i] and imgs[1][i] are the positive␣

→˓pairs

TODO: Calculate the contrastive loss of SimCLR. Try to be as efficient as␣
→˓possible

Hint: if you add imgs into a batch where over dimension 0, you have [imgs[0],
→˓imgs[1]],

the positive pair for an image at position i is always at (i + batch_size) %␣
→˓(2 * batch_size)

Can you create a mask to find the positive element for each batch element?
raise NotImplementedError

TODO: Log the loss and the top-1 and top-5 accuracy as how often the most␣
→˓similar image was the positive

You can also split this part into another function if you prefer
raise NotImplementedError
self.log(mode+'_acc_top1', ...)
self.log(mode+'_acc_top5', ...)

return loss

def training_step(self, batch, batch_idx):
return self.info_nce_loss(batch, mode='train')

def validation_step(self, batch, batch_idx):
self.info_nce_loss(batch, mode='val')

[]: # TODO: Create some test cases yourself to check the INFO-NCE loss and the logging!
raise NotImplementedError

Alternatively to performing the validation on the contrastive learning loss as well, we could also take a simple, small

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 105

ASCI CBL Practicals, Release v1.0

downstream task, and track the performance of the base network 𝑓(·) on that. However, in this tutorial, we will restrict
ourselves to the STL10 dataset where we use the task of image classification on STL10 as our test task.

Training

Now that we have implemented SimCLR and the data loading pipeline, we are ready to train the model. We will use
the same training function setup as usual. For saving the best model checkpoint, we track the metric val_acc_top5,
which describes how often the correct image patch is within the top-5 most similar examples in the batch. This is
usually less noisy than the top-1 metric, making it a better metric to choose the best model from.

[]: def train_simclr(batch_size, max_epochs=500, **kwargs):
trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH, 'SimCLR'),

gpus=1 if str(device)=='cuda:0' else 0,
max_epochs=max_epochs,
callbacks=[ModelCheckpoint(save_weights_only=True, mode='max',␣

→˓monitor='val_acc_top5'),
LearningRateMonitor('epoch')],

check_val_every_n_epoch=5)
trainer.logger._default_hp_metric = None # Optional logging argument that we don't␣

→˓need

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, 'SimCLR.ckpt')
if os.path.isfile(pretrained_filename):

print(f'Found pretrained model at {pretrained_filename}, loading...')
model = SimCLR.load_from_checkpoint(pretrained_filename) # Automatically loads␣

→˓the model with the saved hyperparameters
else:

train_loader = data.DataLoader(unlabeled_data, batch_size=batch_size,␣
→˓shuffle=True,

drop_last=True, pin_memory=True, num_workers=NUM_
→˓WORKERS)

val_loader = data.DataLoader(train_data_contrast, batch_size=batch_size,␣
→˓shuffle=False,

drop_last=False, pin_memory=True, num_workers=NUM_
→˓WORKERS)

pl.seed_everything(42) # To be reproducable
model = SimCLR(max_epochs=max_epochs, **kwargs)
trainer.fit(model, train_loader, val_loader)
model = SimCLR.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)

→˓# Load best checkpoint after training

return model

A common observation in contrastive learning is that the larger the batch size, the better the models perform. A larger
batch size allows us to compare each image to more negative examples, leading to overall smoother loss gradients, but
a batch size of 256 is sufficient here. Again, for a first run, you can use 10 epochs, but try to increase the number of
epochs for a final run.

[]: simclr_model = train_simclr(batch_size=256,
hidden_dim=128,
lr=5e-4,
temperature=0.07,

(continues on next page)

106 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

weight_decay=1e-4,
max_epochs=10)

To get an intuition of how training with contrastive learning behaves, we can take a look at the TensorBoard below:

[]: %tensorboard --logdir ../saved_models/practical5/SimCLR/

In your report, show the top-1 and top-5 accuracy validation curves. Discuss the overall performance and the training
speed. Is the model already converged? What does the final performance of the model imply about the learned feature
space?

3.6.3 Part 2: Logistic Regression

After we have trained our model via contrastive learning, we can deploy it on downstream tasks and see how well it
performs with little data. A common setup, which also verifies whether the model has learned generalized represen-
tations, is to perform Logistic Regression on the features. In other words, we learn a single, linear layer that maps the
representations to a class prediction. Since the base network 𝑓(·) is not changed during the training process, the model
can only perform well if the representations of ℎ describe all features that might be necessary for the task. Further, we
do not have to worry too much about overfitting since we have very few parameters that are trained. Hence, we might
expect that the model can perform well even with very little data.

First, let’s implement a simple Logistic Regression setup for which we assume that the images already have been
encoded in their feature vectors. If very little data is available, it might be beneficial to dynamically encode the images
during training so that we can also apply data augmentations. However, the way we implement it here is much more
efficient and can be trained within a few seconds. Further, using data augmentations did not show any significant gain
in this simple setup.

[]: class LogisticRegression(pl.LightningModule):

def __init__(self, feature_dim, num_classes, lr, weight_decay, max_epochs=100):
super().__init__()
self.save_hyperparameters()
Mapping from representation h to classes
TODO: Initialize logistic regression model
raise NotImplementedError

def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(),

lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay)

lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(self.hparams.max_

→˓epochs*0.6),
int(self.hparams.max_

→˓epochs*0.8)],
gamma=0.1)

return [optimizer], [lr_scheduler]

def _calculate_loss(self, batch, mode='train'):
TODO: Calculate classification loss for logistic regression model
raise NotImplementedError

(continues on next page)

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 107

ASCI CBL Practicals, Release v1.0

(continued from previous page)

def training_step(self, batch, batch_idx):
return self._calculate_loss(batch, mode='train')

def validation_step(self, batch, batch_idx):
self._calculate_loss(batch, mode='val')

def test_step(self, batch, batch_idx):
self._calculate_loss(batch, mode='test')

The data we use is the training and test set of STL10. The training contains 500 images per class, while the test set has
800 images per class.

[]: img_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])

train_img_data = STL10(root=DATASET_PATH, split='train', download=True,
transform=img_transforms)

test_img_data = STL10(root=DATASET_PATH, split='test', download=True,
transform=img_transforms)

downscale_dataset(train_img_data)
downscale_dataset(test_img_data)

print("Number of training examples:", len(train_img_data))
print("Number of test examples:", len(test_img_data))

Next, we implement a small function to encode all images in our datasets. The output representations are then used as
inputs to the Logistic Regression model.

[]: @torch.no_grad()
def prepare_data_features(model, dataset):

TODO: Obtain the feature representation for all images in the dataset
raise NotImplementedError

Return a new dataset with the image features and labels
return data.TensorDataset(feats, labels)

Let’s apply the function to both training and test set below.

[]: train_feats_simclr = prepare_data_features(simclr_model, train_img_data)
test_feats_simclr = prepare_data_features(simclr_model, test_img_data)

Finally, we can write a training function as usual. We evaluate the model on the test set every 10 epochs to allow early
stopping, but the low frequency of the validation ensures that we do not overfit too much on the test set.

[]: def train_logreg(batch_size, train_feats_data, test_feats_data, model_suffix, max_
→˓epochs=100, **kwargs):

trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH,
→˓"LogisticRegression"),

gpus=1 if str(device)=="cuda:0" else 0,
max_epochs=max_epochs,
callbacks=[ModelCheckpoint(save_weights_only=True, mode='max',␣

→˓monitor='val_acc'),
LearningRateMonitor("epoch")],

(continues on next page)

108 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

progress_bar_refresh_rate=0,
check_val_every_n_epoch=10)

trainer.logger._default_hp_metric = None

Data loaders
train_loader = data.DataLoader(train_feats_data, batch_size=batch_size, shuffle=True,

drop_last=False, pin_memory=True, num_workers=0)
test_loader = data.DataLoader(test_feats_data, batch_size=batch_size, shuffle=False,

drop_last=False, pin_memory=True, num_workers=0)

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, f"LogisticRegression_{model_

→˓suffix}.ckpt")
if os.path.isfile(pretrained_filename):

print(f"Found pretrained model at {pretrained_filename}, loading...")
model = LogisticRegression.load_from_checkpoint(pretrained_filename)

else:
pl.seed_everything(42) # To be reproducable
model = LogisticRegression(**kwargs)
trainer.fit(model, train_loader, test_loader)
model = LogisticRegression.load_from_checkpoint(trainer.checkpoint_callback.best_

→˓model_path)

Test best model on train and validation set
train_result = trainer.test(model, train_loader, verbose=False)
test_result = trainer.test(model, test_loader, verbose=False)
result = {"train": train_result[0]["test_acc"], "test": test_result[0]["test_acc"]}

return model, result

Despite the training dataset of STL10 already only having 500 labeled images per class, we will perform experiments
with even smaller datasets. Specifically, we train a Logistic Regression model for datasets with only 10, 20, 50, 100,
200, and all 500 examples per class. This gives us an intuition on how well the representations learned by contrastive
learning can be transfered to a image recognition task like this classification. First, let’s define a function to create the
intended sub-datasets from the full training set:

[]: def get_smaller_dataset(original_dataset, num_imgs_per_label):
TODO: Return dataset with the first N images per label
raise NotImplementedError

Next, let’s run all models. Despite us training 6 models, this cell could be run within a minute or two without the
pretrained models.

[]: # TODO: Run the logistic regression on datasets of 10, 20, 50, 100, 200, and 500 labeled␣
→˓examples
raise NotImplementedError

Finally, let’s plot the results.

[]: # TODO: Plot the results
raise NotImplementedError

Add the plot in your report and discuss the overall performance as well as the trend you see in the plot. Where do you

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 109

ASCI CBL Practicals, Release v1.0

see the biggest jump in performance? Is the performance already saturating?

3.6.4 Part 3: Baseline

As a baseline to our results above, we will train the BaseNetwork with random initialization on the labeled training
set of STL10. The results will give us an indication of the advantages that contrastive learning on unlabeled data has
compared to using only supervised training. First, let’s implement it below.

[]: class Baseline(pl.LightningModule):

def __init__(self, num_classes, lr, weight_decay, max_epochs=100):
super().__init__()
self.save_hyperparameters()
TODO: Initialize a base network
raise NotImplementedError

def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(),

lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay)

lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(self.hparams.max_

→˓epochs*0.7),
int(self.hparams.max_

→˓epochs*0.9)],
gamma=0.1)

return [optimizer], [lr_scheduler]

def _calculate_loss(self, batch, mode='train'):
TODO: Calculate classification loss and accuracy
raise NotImplementedError

def training_step(self, batch, batch_idx):
return self._calculate_loss(batch, mode='train')

def validation_step(self, batch, batch_idx):
self._calculate_loss(batch, mode='val')

def test_step(self, batch, batch_idx):
self._calculate_loss(batch, mode='test')

It is clear that the ResNet easily overfits on the training data since its parameter count is more than 1000 times larger than
the dataset size. To make the comparison to the contrastive learning models fair, we apply data augmentations similar
to the ones we used before: horizontal flip, crop-and-resize, grayscale, and gaussian blur. Color distortions as before
are not used because the color distribution of an image showed to be an important feature for the classification. Hence,
we observed no noticeable performance gains when adding color distortions to the set of augmentations. Similarly, we
restrict the resizing operation before cropping to the max. 125% of its original resolution, instead of 1250% as done in
SimCLR. This is because, for classification, the model needs to recognize the full object, while in contrastive learning,
we only want to check whether two patches belong to the same image/object. Hence, the chosen augmentations below
are overall weaker than in the contrastive learning case.

[]: train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(size=32, scale=(0.8,␣

→˓1.0)), (continues on next page)

110 Chapter 3. Report submission

ASCI CBL Practicals, Release v1.0

(continued from previous page)

transforms.RandomGrayscale(p=0.2),
transforms.GaussianBlur(kernel_size=3, sigma=(0.1,

→˓ 0.5)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

train_img_aug_data = STL10(root=DATASET_PATH, split='train', download=True,
transform=train_transforms)

downscale_dataset(train_img_aug_data)

The training function for the ResNet is almost identical to the Logistic Regression setup. Note that we allow the ResNet
to perform validation every 2 epochs to also check whether the model overfits strongly in the first iterations or not.

[]: def train_baseline(batch_size, max_epochs=100, **kwargs):
trainer = pl.Trainer(default_root_dir=os.path.join(CHECKPOINT_PATH, "ResNet"),

gpus=1 if str(device)=="cuda:0" else 0,
max_epochs=max_epochs,
callbacks=[ModelCheckpoint(save_weights_only=True, mode="max",␣

→˓monitor="val_acc"),
LearningRateMonitor("epoch")],

progress_bar_refresh_rate=1,
check_val_every_n_epoch=10)

trainer.logger._default_hp_metric = None

Data loaders
train_loader = data.DataLoader(train_img_aug_data, batch_size=batch_size,␣

→˓shuffle=True,
drop_last=True, pin_memory=True, num_workers=NUM_

→˓WORKERS)
test_loader = data.DataLoader(test_img_data, batch_size=batch_size, shuffle=False,

drop_last=False, pin_memory=True, num_workers=NUM_
→˓WORKERS)

Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "ResNet.ckpt")
if os.path.isfile(pretrained_filename):

print("Found pretrained model at %s, loading..." % pretrained_filename)
model = Baseline.load_from_checkpoint(pretrained_filename)

else:
pl.seed_everything(42) # To be reproducable
model = Baseline(**kwargs)
trainer.fit(model, train_loader, test_loader)
model = Baseline.load_from_checkpoint(trainer.checkpoint_callback.best_model_

→˓path)

Test best model on validation set
train_result = trainer.test(model, train_loader, verbose=False)
val_result = trainer.test(model, test_loader, verbose=False)
result = {"train": train_result[0]["test_acc"], "test": val_result[0]["test_acc"]}

return model, result

3.6. Practical 5: Self-Supervised Contrastive Learning with SimCLR 111

ASCI CBL Practicals, Release v1.0

Finally, let’s train the model and check its results. For a first run, use 10 epochs, but to obtain final results, try to train
the model on more epochs.

[]: baseline_model, baseline_result = train_baseline(batch_size=64,
num_classes=10,
lr=1e-3,
weight_decay=2e-4,
max_epochs=10)

[]: print(f"Accuracy on training set: {baseline_result['train']:.2%}")
print(f"Accuracy on test set: {baseline_result['test']:.2%}")

In your report, note the results you have obtained from this baseline and compare it to the logistic regression model in
Part 2. What do you see? What do the results imply?

3.6.5 Conclusion

In this tutorial, we have discussed self-supervised contrastive learning and implemented SimCLR as an example
method. We have applied it to the STL10 dataset and showed that it can learn generalizable representations that we
can use to train simple classification models. Besides the discussed hyperparameters, the size of the model seems to be
important in contrastive learning as well. If a lot of unlabeled data is available, larger models can achieve much stronger
results and come close to their supervised baselines. Further, there are also approaches for combining contrastive and
supervised learning, leading to performance gains beyond supervision (see Khosla et al.). Moreover, contrastive learn-
ing is not the only approach to self-supervised learning that has come up in the last two years and showed great results.
Other methods include distillation-based methods like BYOL and redundancy reduction techniques like Barlow Twins.
There is a lot more to explore in the self-supervised domain.

References

[1] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning of visual
representations. In International conference on machine learning (pp. 1597-1607). PMLR. (link)

[2] Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020). Big self-supervised models are strong
semi-supervised learners. NeurIPS 2021 (link).

[3] Oord, A. V. D., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748. (link)

[4] Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E., Doersch, C., Pires, B.A., Guo, Z.D.,
Azar, M.G. and Piot, B. (2020). Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733. (link)

[5] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C. and Krishnan, D. (2020).
Supervised contrastive learning. arXiv preprint arXiv:2004.11362. (link)

[6] Zbontar, J., Jing, L., Misra, I., LeCun, Y. and Deny, S. (2021). Barlow twins: Self-supervised learning via redun-
dancy reduction. arXiv preprint arXiv:2103.03230. (link)

112 Chapter 3. Report submission

https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2103.03230
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2103.03230

	Schedule
	How to run the notebooks
	Report submission
	Tutorial: Introduction to PyTorch
	The Basics of PyTorch
	Tensors
	Initialization
	Tensor to Numpy, and Numpy to Tensor
	Operations
	Indexing

	Dynamic Computation Graph and Backpropagation
	GPU support

	Learning by example: Continuous XOR
	The model
	nn.Module
	Simple classifier

	The data
	The dataset class
	The data loader class

	Optimization
	Loss modules
	Stochastic Gradient Descent

	Training
	Saving a model

	Evaluation
	Visualizing classification boundaries

	Additional features we didn’t get to discuss yet
	TensorBoard logging

	Practical 1: Multi-Layer Perceptrons
	Part 1: Implementing the MLP
	MLP Module
	Optimizer
	Training and validation function

	Part 2: Improving your MLP
	Part 3: Investigating the limitations
	Conclusion

	Practical 2: Convolutional Neural Networks
	PyTorch Lightning
	Part 1: ResNet
	Part 2: Rotational Invariance
	Part 3: Pixel shuffling
	Conclusion

	Practical 3: Vision Transformers
	Part 1: Building a Transformer for image classification
	Experiments
	Bonus 1: Importance of Positional Embeddings
	Conclusion
	References

	Practical 4: Regular Group Convolutions
	Introduction
	Brief recap on CNNs
	Brief recap on GCNNs
	Installing and importing some useful packages

	Part 1: Group theory
	1.1 What is a group?
	1.2 Implementing a group in python
	1.3 Implementing the cyclic group C4
	1.4 Visualizing the group action

	Part 2: Group Equivariant Convolutional Networks
	2.1 Lifting convolution
	2.1.1 Overview
	2.1.2 Implementing the lifting convolution kernel
	2.1.3 Implementing the lifting convolution

	2.2 Group convolution
	2.2.1 Overview
	2.2.2 Implementing the group convolution kernel
	2.2.3 Implementing the group convolution

	2.3 Projection to obtain invariance and tying everything together

	Part 3: Experimenting with our implementation
	3.1 Generalization to the group action
	3.2 Inspecting the created feature maps

	Concluding remarks

	Practical 5: Self-Supervised Contrastive Learning with SimCLR
	Data Augmentation for Contrastive Learning
	Part 1: SimCLR implementation
	Training

	Part 2: Logistic Regression
	Part 3: Baseline
	Conclusion
	References

